Abstract
The electromagnetic non-bonded interactions of BH2NBH2 molecule inside the B15N15 ring has been investigated with B3LYP method using EPR-II and EPR-III basis sets. Optimized structures, relative stability, and hyperfine spectroscopic parameters, such as total atomic charges, spin densities, electrical potential, and isotropic Fermi coupling constants of radical, cationic, and anionic forms of BH2NBH2 in different loops and bonds have been calculated. The spectral properties have been contributed to explain the characteristics of hyperfine electronic structure. The calculation for the B15N15–BH2NBH2 system and then for adenine–thymine base pairs coupled with BH2NBH2 molecule inside the B15N15 ring (A–BNB–T) have been done and three quantized rotational frequencies for transitions among cationic, radical, and anionic have been calculated, too. All observed frequencies appeared in the IR rotational region. So, this system can be used for the measurement of rotational spectra related to electrical voltage differences existing in macromolecules such as proteins and DNA and membrane. Extensive calculations have been carried out on the radical, anionic, and cationic forms of BH2NBH2 to obtain data and it has been observed that the radial coordinate of the dipole moment vector (r) as well as the voltage differences (ΔV) and relative energies (ΔE) exhibited Gaussian distribution. We have obtained a relationship between dipole moments and the voltage differences and energies of system.
This is a preview of subscription content, access via your institution.



References
Silberberg MS (2009) Chemistry, 5th edn. McGraw-Hill, New York, p 483
Crane T, Cowan PBP (2000) Phys Rev B 62:11359
Zedlitz R (1996) J Non-Cryst Solids 198–200:403
Henager CH Jr (1993) Appl Opt 32:91
Weissmantel S (1999) Diam Relat Mater 8:377
Leichtfried G (2002) Landolt–Börnstein—Group VIII advanced materials and technologies: powder metallurgy data. Refractory, hard and intermetallic materials. 2A2. Springer, Berlin, pp 118–139
Delhaes P (2001) Graphite and precursors. CRC Press, Boca Raton ISBN 9056992287
Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404
Taniguchi T, Watanabe K, Koizumi S, Sakaguchi I, Sekiguchi T, Yamaoka S (2002) Appl Phys Lett 81:22–4145
Locke IW, Darwish AD, Kroto HW, Prassides K, Taylor R, Walton DRM (1994) Chem Phys Lett 225:186
Behrman EC, Foehrweiser RK, Myers JR, French BR, Zandler ME (1994) Phys Rev A 49:R1543
Kaxiras E, Jackson K, Pederson MR (1994) Chem Phys Lett 225:448
Barone V (1996) In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific Publ. Co., Singapore
Oku K, Nishiwaki A, Narita I, Gonda M (2003) Chem Phys Lett 380:620–623
Slanina Z, Sun M-L, Lee SL (1997) NanoStruct Mater 8(5):623
Fowler PW, Rogers KM, Seifert G, Terrones M, Terrones H (1999) Chem Phys Lett 299:359–367
Liu Y, Wenli Z, Isaac BB, Boggs JE (2009) J Chem Phys 30:184305
Loiseau A, Willaime F, Demoncy N, Schramchenko N, Hug G (1998) Carbon 36(5–6):743-752, 1598
Sun ML, Slanina Z, Lee SL (1995) Chem Phys Lett 233:279–283
Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352–358
Takeo O, Masaki K, Hidehiko K, Ichihito N (2001) Int J Inorg Mater 3:597–612
Xu SH, Zhang MY, Zhao YY, Cheng BG, Zhang J, Sun CC (2006) Chem Phys Lett 418:297–301
Strout DL (2000) J Phys Chem A 104:3364–3366
Strout DL (2001) J Phys Chem A 105:261–263
Strout DL (2004) Chem Phys Lett 383:95–98
Alexandre SS, Mazzoni MSC, Chacham H (1999) Appl Phys Lett 75:61–63
Alexandre SS, Nunes RW, Chacham H (2002) Phys Rev B 66:085–406
Wu HS, Jiao HJ (2004) Chem Phys Lett 386:369–372
Wu HS, Xu XH, Strout DL, Jiao HJ (2005) J Mol Model 12:1–8
Rogers KW, Fowler PW, Seifert G (2000) Chem Phys Lett 332:43–50
Zhu HY, Schmalz TG, Klein DJ (1997) Int J Quant Chem 63:393–401
Manolopoulos DE, Fowler PW (1991) Chem Phys Lett 187:1–7
Zope RR, Dunlap BI (2004) Chem Phys Lett 386:403–407
Knight LB Jr, Hill DW, Kirk TJ, Arrington CA (1992) J Phys Chem 96:555
Slanina Z, Martin JML, Franqois J-P, Gijbels R (1993) Chem Phys Lett 201:54
Slanina Z, Martin JML, Franqois JP, Gijbels R (1993) Chem Phys 178:77
Martin JML, Slanina Z, Franqois JP, Gijbels R (1994) Mol Phys 82:155
Iijima S, Ichihashi T (1993) Nature 363:603
Ajayan PM (1999) Chem Rev 99:1787
Maciel GS, Edgardo G (2005) Chem Phys Lett 409:29–33
Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269
Martin F, Zipse H (2004) J Comput Chem 26:97
Chipot C, Maigret B, Rivail J-L, Sheraga HA (1992) J Phys Chem 96:10276
Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431
Cohen MH, Reif F (1975) Solid State Phys 5:321
Lucken EAC (1969) Nuclear quadrupole coupling constant. Academic Press, London
Shukla MK, Mishra SK, Kumar A, Mishra PC (2000) J Comp Chem 21:826–846
Bors W, Michel C, Stettmaier K, Kazazic SP, Klasinc L (2002) Croat Chem Acta 75(4):957–964
Tamulis A, Tsifrinovich VI, Tretiak S, Berman GP, Allara DL (2007) Chem Phys Lett 436:144–149
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926
Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2:91–104
Weinhold F (1998) Natural bond orbital methods. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA (eds) Encyclopedia of computational chemistry. Wiley, Chichester
Weinhold F (2001) NBO 5.0 Program manual. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, p 53706
Becke AD (1993) J Chem Phys 98:5648
Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich Ś, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Raghavachari JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A.7. Gaussian, Inc., Pittsburgh
Zhang RB, Huyskensd TZ, Ceulemeans A, Nguyen MT (2005) Chem Phys 316:35–44
Mayer LI (1998) Chem Phys Lett 297:365–373
Jansen HB, Ross P (1969) Chem Phys Lett 3:140
Boys SF, Bernar F (1970) Mol Phys 19:553
Jenson F (2007) Introduction computational chemistry, 2nd edn. Wiley, New York
Culot F, Lievin J (1992) Phys Scr 46:502–517
Wrzalik R, Merkell K, Kocot A (2003) J Mol Model 9:248–258
Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373
Goodman L, Pophristic V, Weinhold F (1999) Acc Chem Res 32:983–993
Reed AE, Weinhold F (1985) J Am Chem Soc 107:1919–1921
Myers WK, Scholes CP, Tierney DL (2009) J Am Chem Soc 131(30):10421
Latajka Z, Bouteiller Y (1994) J Chem Phys 101:9793–9799
Kim K, Jordan KDJ (1994) Phys Chem 98:10089–10094
Jalbout AF (2002) Acta Chim Slov 49:643–648
Emanuele E, Negri F, Orlandi G (2007) Inorg Chim Acta 360:1052–1062
Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, Umezawa Y, Nishio M (2007) Carbohydrate Research 342:1202–1209
Zhang S, Yang P (2005) J Mol Struct: Theochem 757:77–86
Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33–38
Glendening ED, Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993) J Am Chem Soc 115:10952–10957
Bruschi M, Giuffreda MG, Lüthi HP (2002) Chem Eur J 8:4216–4227
Giuffreda MG, Bruschi M, Lüthi HP (2004) Chem Eur J 10:5671–5680
Kjaergaard HG, Henry BR (1994) Mol Phys 83:1099–1116
Rosmusb P, Vladimir G, Tyutere V (2000) Chem Phys Lett 331(2–4):317–322
Fan J-F, Wang Q, Qi-Ying XIAO, Graaf V (2002) Chin J Struct Chem 21(2):139–141
Acknowledgment
The portion of this study done in Austin has been supported by grant F-100 from the Welch Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Monajjemi, M. Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: a nano molecularmotor. Struct Chem 23, 551–580 (2012). https://doi.org/10.1007/s11224-011-9895-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11224-011-9895-8
Keywords
- Boron nitride cages
- Non-bounded interaction
- NQR
- HOMO
- LUMO
- NBO
- Hyperfine properties
- DFT
- Dipole moment
- EPR-II
- EPR-III