Skip to main content
Log in

Density functional study of super cell N-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

N-doped SWCNT with different concentration of doped nitrogen atoms were investigated through density functional theory (DFT) calculations for detecting CO molecule. The CO molecule was adsorbed to different sites of the modified nanotubes and their geometric structures and electronic properties were investigated after full optimization. A significant change can be observed in adsorption energies and electronic properties of N-doped SWCNT after CO adsorption. By increasing the number of nitrogen atoms in each unit cell, these properties change more obviously. So these modified nanotubes can be used as CO sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The “C.pz-vbc.UPF”, “N.pz-vbc.UPF”, “O.pz-mt.UPF” for Norm-Conserving in LDA approximation from the PWscf table (http://www.pwscf.org/pseudo.htm) were used for carbon, nitrogen, and oxygen, respectively.

References

  1. Collins P, Bradley K, Ishigami M, Zeatl A (2000) Science 287:1801–1804

    Article  CAS  Google Scholar 

  2. Bekyarova E, Davis M, Burch T, Itkis E, Sunshine S, Haddon R (2004) J Phys Chem B 108:19717–19720

    Article  CAS  Google Scholar 

  3. Someyat T, Small J, Kim P, Nuckulls C, Yardley J (2003) Nano Lett 3:877–881

    Article  Google Scholar 

  4. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929–933

    Article  CAS  Google Scholar 

  5. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) J Am Chem Soc 125:11329–11333

    Article  CAS  Google Scholar 

  6. Novak J, Snow E, Houser E, Park D, Stepnowoski J, McGill R (2003) Appl Phys Lett 83:4026–4028

    Article  CAS  Google Scholar 

  7. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho K (2003) Nano Lett 3:347–351

    Article  CAS  Google Scholar 

  8. Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S (2003) Appl Phys Lett 82:961–963

    Article  CAS  Google Scholar 

  9. Shirvani B, Beheshtian J, Esrafili M, Hadipour N (2010) Physica B 405:1455–1460

    Article  CAS  Google Scholar 

  10. Rafati AA, Hashemianzadeh SM, Bolboli Nojini Z (2009) J Colloid Interface Sci 336:1–12

    Article  CAS  Google Scholar 

  11. Huang C-S et al (2009) Diam Relat Mater 18:461–465

    Article  CAS  Google Scholar 

  12. Penza M, Rossi R, Alvisi M, Cassano G, Serra E (2009) Sens Actuators B 140:176–184

    Article  Google Scholar 

  13. He L, Jia Y, Meng F, Li M, Liu J (2009) Mater Sci Eng B 163:76–81

    Article  CAS  Google Scholar 

  14. Kaczmarek A, Dinadayalane TC, Łukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211–2219

    Article  CAS  Google Scholar 

  15. Dinadayalane TC, Kaczmarek A, Łukaszewicz J, Leszczynski J (2007) J Phys Chem C 11:7376–7383

    Article  Google Scholar 

  16. Yang FH, Lachawiec AJ Jr, Yang RT (2006) J Phys Chem B 110:6236–6244

    Article  CAS  Google Scholar 

  17. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  18. Jhi S, Louie SG, Cohen ML (2000) Phys Rev Lett 85:1710–1713

    Article  CAS  Google Scholar 

  19. Peng S, Cho K (2000) Nanotechnology 11:57–60

    Article  CAS  Google Scholar 

  20. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971–1975

    Article  CAS  Google Scholar 

  21. Dekker C (1999) Phys Today 52:22–28

    Article  CAS  Google Scholar 

  22. Kong J, Chapline MG, Dai H (2001) Adv Mater 13:1384–1386

    Article  CAS  Google Scholar 

  23. Duclaux L (2002) Carbon 40:1751–1764

    Article  CAS  Google Scholar 

  24. Han W, Bando Y, Kurashima K, Sato T (1999) Chem Phys Lett 299:368

    Article  CAS  Google Scholar 

  25. Wang P, Zhang C (2010) Theochem 955:84–90

    Article  CAS  Google Scholar 

  26. Satishkumar BC, Govindraj A, Harikumar KR, Zhang JP, Cheetam AK, Rao CNR (1999) Chem Phys Lett 300:473–477

    Article  CAS  Google Scholar 

  27. Golberg D, Bando Y, Kurashima K, Sato T (2000) Chem Phys Lett 323:185–191

    Article  CAS  Google Scholar 

  28. Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T (2000) Carbon 38:2017–2027

    Article  CAS  Google Scholar 

  29. Borowiak-Palen E, Pichler T, Fuentes GG, Gra A, Kalenczuk RJ, Knupfer M (2003) Chem Phys Lett 378:516–520

    Article  CAS  Google Scholar 

  30. Ayala P, Arenal R, Rummeli M, Rubio A, Pichler T (2010) Carbon 48:575–586

    Article  CAS  Google Scholar 

  31. Diaz-Flores PE, López-Urı´as F, Terrones M, Rangel-Mendez JR (2009) J Colloid Interface Sci 334:124–131

    Article  CAS  Google Scholar 

  32. Wang RX, Zhang DJ, Zhang YM, Liu CB (2006) J Phys Chem B 110:18267–18271

    Article  CAS  Google Scholar 

  33. Santucci S, Picozzi S, Gregorio Di F, Lozzi L, Cantalini C, Valentini L, Kenny JM, Delley B (2003) J Chem Phys 119:10904–10910

    Article  CAS  Google Scholar 

  34. Matranga C, Bockrath B (2005) J Phys Chem B 109:4853–4864

    Article  CAS  Google Scholar 

  35. da Silva LB, Fagan SB, Mota R (2004) Nano Lett 4:65–67

    Article  CAS  Google Scholar 

  36. Wang R, Zhang D, Sun W, Han Z, Liu C (2007) Theochem 806:93–97

    Article  CAS  Google Scholar 

  37. Peng S, Cho K (2003) Nano Lett 3:513–517

    Article  CAS  Google Scholar 

  38. Jana D, Chen L, Chen CW, Chen KH (2009) Diam Relat Mater 18:1002–1005

    Article  CAS  Google Scholar 

  39. Ewels CP, Glerup M (2005) J Nanosci Nanotechnol 5:1345–1363

    Article  CAS  Google Scholar 

  40. Terrones M et al (2004) Mater Today 7:30–45

    Article  CAS  Google Scholar 

  41. Bai L, Zhou Z (2007) Carbon 45:2105–2110

    Article  CAS  Google Scholar 

  42. Durstock M, Xia Z, Du F, Gong K, Liming D (2009) Science 323:760–764

    Article  Google Scholar 

  43. Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P (2007). http://www.quantume-spresso.org

  44. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  45. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Hamadanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamadanian, M., Khoshnevisan, B. & Fotooh, F.K. Density functional study of super cell N-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor. Struct Chem 22, 1205–1211 (2011). https://doi.org/10.1007/s11224-011-9814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9814-z

Keywords

Navigation