Skip to main content
Log in

DFT based insights into reactivity descriptors of encapsulated B24N24 nanocages

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this study is to probe the DFT based chemical reactivity parameter, electrophilicity index as a possible molecular engineering of endohedral BN-nanocages. The structure and electronic properties of endohedral boron nitride nanocages have been investigated as a function of alkali atom inside the nanocage using density functional theory. We have calculated and analyzed basic characteristic related to the reactive behavior, such as HOMO–LUMO band gap, chemical hardness, chemical potential, vertical electron affinity, and vertical ionization potential, as well as the global electrophilicity index, ω(I, A) of the encapsulated B24N24 nanocages. We also investigated the MQZVP basis set effect on total electronic energy of the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oku T, Kuno M, Kitahara H, Narita I (2001) Int J Inorg Mater 3:597–612

    Article  CAS  Google Scholar 

  2. Radosavljević M, Appenzeller J, Derycke V, Martel R, Avouris Ph (2003) Appl Phys Lett 82:4131–4133

    Article  Google Scholar 

  3. Kokado S, Harigaya K (2003) Synth Met 745:135–136

    Google Scholar 

  4. Oku T, Hirano T, Kuno M, Kusunose T, Niihara K, Suganuma K (2000) Mater Sci Eng B 74:206–217

    Article  Google Scholar 

  5. Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) J Am Chem Soc 124:7672–7673

    Article  CAS  Google Scholar 

  6. Oku T, Kuno M, Narita I (2004) J Phys Chem Solids 65:549–552

    Article  CAS  Google Scholar 

  7. Koi N, Oku T (2004) Solid State Commun 131:121–124

    Article  CAS  Google Scholar 

  8. Mickelson W, Aloni S, Han W-Q, Cumings J, Zettl A (2003) Science 300:467–469

    Article  CAS  Google Scholar 

  9. Golberg D, Xu F-F, Bando Y (2003) Appl Phys A 76:479–485

    Article  CAS  Google Scholar 

  10. Oku T, Narita I, Nishiwaki A, Koi N (2004) Defects Diffus Forum 113:226–228

    Google Scholar 

  11. Narita I, Oku T (2003) Diam Relat Mater 12:1146–1150

    Article  CAS  Google Scholar 

  12. Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diam Relat Mater 12:1918–1926

    Article  CAS  Google Scholar 

  13. Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diam Relat Mater 12:1138–1145

    Article  CAS  Google Scholar 

  14. Pokropivny VV, Skorokhod VV, Oleinik GS, Kurdyumov AV, Bartnitskaya TS, Pokropivny AV, Sisonyuk AG, Sheichenko DM (2000) J Solid State Chem 154:214–222

    Article  CAS  Google Scholar 

  15. Oku T, Nishiwaki A, Narita I (2003) Chem Phys Lett 380:620–623

    Article  CAS  Google Scholar 

  16. Oku T, Nishiwaki A, Narita I (2004) Phys B 351:184–190

    Article  CAS  Google Scholar 

  17. Wu H-Sh, Jiao H (2004) Chem Phys Lett 386:369–372

    Article  CAS  Google Scholar 

  18. Zope RR, Baruah T, Pederson MR, Dunlap BI (2004) Chem Phys Lett 393:300–304

    Article  CAS  Google Scholar 

  19. Lan Y-Z, Cheng W-D, Wu D-S, Li X-D, Zhang H, Gong Y-J, Shen J, Li F-F (2005) J Mol Struct 730:9–15

    CAS  Google Scholar 

  20. Jianguang W, Li M, Jijun Z, Baolin W, Guanghou W (2008) J Chem Phys 128:0843061–0843069

    Google Scholar 

  21. Oliaey A, Boshra A, Khavary M (2010) Phys E 42:2314–2318

    Article  CAS  Google Scholar 

  22. Rouzbehani GM, Boshra A, Seif A (2009) Monatsh fur Chem 140:255–263

    Article  CAS  Google Scholar 

  23. Pokropivny VV, Bekenev VL (2006) Semiconductors 40(6):636–641

    Article  CAS  Google Scholar 

  24. Koi N, Oku T, Suganuma KS (2005) Phys E 29(3–4):541–546

    Article  CAS  Google Scholar 

  25. Koi N, Oku T (2004) Sci Technol Adv Mater 5(5–6):625–628

    Article  CAS  Google Scholar 

  26. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  28. Parr RG, Von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  29. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  30. Chattaraj PK, Roy DR, Elango M, Subramanian V (2005) J Phys Chem A 109:9590–9597

    Article  CAS  Google Scholar 

  31. Weigend F, Furche F, Ahlrichs RJ (2003) Chem Phys 119:12753–12762

    CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  34. Pearson RG (1997) Chemical hardness applications: from molecules to solids. VCH-Wiley, Weinheim

    Google Scholar 

  35. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  36. Parr RG, Donnelly DA, Levy M, Palke M (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  37. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  38. Pearson R (2005) J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  39. Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  40. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Young D (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley, New York

    Google Scholar 

  44. Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  45. Cramer CJ (2002) Essentials of computational chemistry—theories and models. Wiley, England

    Google Scholar 

  46. Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattaraj PK (2004) Chem Phys Lett 394:225–230

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded entirely by Islamic Azad University, Marvdasht branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Karachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karachi, N., Boshra, A. & Jadidi, S. DFT based insights into reactivity descriptors of encapsulated B24N24 nanocages. Struct Chem 22, 805–809 (2011). https://doi.org/10.1007/s11224-011-9761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9761-8

Keywords

Navigation