Abstract
The purpose of this study is to probe the DFT based chemical reactivity parameter, electrophilicity index as a possible molecular engineering of endohedral BN-nanocages. The structure and electronic properties of endohedral boron nitride nanocages have been investigated as a function of alkali atom inside the nanocage using density functional theory. We have calculated and analyzed basic characteristic related to the reactive behavior, such as HOMO–LUMO band gap, chemical hardness, chemical potential, vertical electron affinity, and vertical ionization potential, as well as the global electrophilicity index, ω(I, A) of the encapsulated B24N24 nanocages. We also investigated the MQZVP basis set effect on total electronic energy of the clusters.
Similar content being viewed by others
References
Oku T, Kuno M, Kitahara H, Narita I (2001) Int J Inorg Mater 3:597–612
Radosavljević M, Appenzeller J, Derycke V, Martel R, Avouris Ph (2003) Appl Phys Lett 82:4131–4133
Kokado S, Harigaya K (2003) Synth Met 745:135–136
Oku T, Hirano T, Kuno M, Kusunose T, Niihara K, Suganuma K (2000) Mater Sci Eng B 74:206–217
Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) J Am Chem Soc 124:7672–7673
Oku T, Kuno M, Narita I (2004) J Phys Chem Solids 65:549–552
Koi N, Oku T (2004) Solid State Commun 131:121–124
Mickelson W, Aloni S, Han W-Q, Cumings J, Zettl A (2003) Science 300:467–469
Golberg D, Xu F-F, Bando Y (2003) Appl Phys A 76:479–485
Oku T, Narita I, Nishiwaki A, Koi N (2004) Defects Diffus Forum 113:226–228
Narita I, Oku T (2003) Diam Relat Mater 12:1146–1150
Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diam Relat Mater 12:1918–1926
Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diam Relat Mater 12:1138–1145
Pokropivny VV, Skorokhod VV, Oleinik GS, Kurdyumov AV, Bartnitskaya TS, Pokropivny AV, Sisonyuk AG, Sheichenko DM (2000) J Solid State Chem 154:214–222
Oku T, Nishiwaki A, Narita I (2003) Chem Phys Lett 380:620–623
Oku T, Nishiwaki A, Narita I (2004) Phys B 351:184–190
Wu H-Sh, Jiao H (2004) Chem Phys Lett 386:369–372
Zope RR, Baruah T, Pederson MR, Dunlap BI (2004) Chem Phys Lett 393:300–304
Lan Y-Z, Cheng W-D, Wu D-S, Li X-D, Zhang H, Gong Y-J, Shen J, Li F-F (2005) J Mol Struct 730:9–15
Jianguang W, Li M, Jijun Z, Baolin W, Guanghou W (2008) J Chem Phys 128:0843061–0843069
Oliaey A, Boshra A, Khavary M (2010) Phys E 42:2314–2318
Rouzbehani GM, Boshra A, Seif A (2009) Monatsh fur Chem 140:255–263
Pokropivny VV, Bekenev VL (2006) Semiconductors 40(6):636–641
Koi N, Oku T, Suganuma KS (2005) Phys E 29(3–4):541–546
Koi N, Oku T (2004) Sci Technol Adv Mater 5(5–6):625–628
Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York
Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873
Parr RG, Von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924
De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464
Chattaraj PK, Roy DR, Elango M, Subramanian V (2005) J Phys Chem A 109:9590–9597
Weigend F, Furche F, Ahlrichs RJ (2003) Chem Phys 119:12753–12762
Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98. Gaussian, Inc., Pittsburgh, PA
Pearson RG (1997) Chemical hardness applications: from molecules to solids. VCH-Wiley, Weinheim
Chermette H (1999) J Comput Chem 20:129–154
Parr RG, Donnelly DA, Levy M, Palke M (1978) J Chem Phys 68:3801–3807
Mulliken RS (1934) J Chem Phys 2:782–793
Pearson R (2005) J Chem Sci 117:369–377
Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195
Becke AD (1988) Phys Rev A 38:3098–3100
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Becke AD (1993) J Chem Phys 98:5648–5652
Young D (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley, New York
Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester
Cramer CJ (2002) Essentials of computational chemistry—theories and models. Wiley, England
Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattaraj PK (2004) Chem Phys Lett 394:225–230
Acknowledgment
This work was funded entirely by Islamic Azad University, Marvdasht branch.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karachi, N., Boshra, A. & Jadidi, S. DFT based insights into reactivity descriptors of encapsulated B24N24 nanocages. Struct Chem 22, 805–809 (2011). https://doi.org/10.1007/s11224-011-9761-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11224-011-9761-8