Skip to main content
Log in

Synthesis, molecular conformation, vibrational, electronic transition, and chemical shift assignments of 4-(thiophene-3-ylmethoxy)phthalonitrile: a combined experimental and theoretical analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work presents the synthesis and characterization of a novel compound, 4-(thiophene-3-ylmethoxy)phthalonitrile (TMP). The spectroscopic properties of the compound were examined by FT-IR, FT-Raman, NMR, and UV techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The UV absorption spectrum of the compound that dissolved in THF was recorded in the range of 200–800 nm. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts (13C NMR and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analyses have been used to elucidate information regarding charge transfer within the molecule. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT method produces good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinkopf W (1941) Die Chemie des Tiophens CA 39(16–482):61

    Google Scholar 

  2. Reddinger JL, Reynolds JR (1999) Adv Polym Sci 145:57122

    Google Scholar 

  3. McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537

    Article  CAS  Google Scholar 

  4. Kerman I, Toppare L, Yilmaz F, Yagci Y (2005) J Polym Sci A A42:509

    CAS  Google Scholar 

  5. Yilmaz F, Sel O, Cirpan A, Toppare L, Hepuzer Y, Yagci Y (2004) J Polym Sci A A41:401

    CAS  Google Scholar 

  6. Kwiatkowski JS, Leszczynski J, Teca I (1997) J Mol Struct 436–437:451

    Article  Google Scholar 

  7. Ramirez FJ, Hernandez V, Lopez Navarrete JT (1994) J Comput Chem 15:405

    Article  CAS  Google Scholar 

  8. Klots TD, Chirico RD, Steele WV (1994) Spectrochim Acta A50:765

    Google Scholar 

  9. Singh DK, Srivastava SK, Ojha AK, Asthana BP (2008) J Mol Struct 892:384

    Article  CAS  Google Scholar 

  10. Rico M, Orza JM, Morcillo J (1965) Spectrochim Acta 21:689

    Article  CAS  Google Scholar 

  11. McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. Cambridge University Press, Cambridge

    Google Scholar 

  12. Leznoff CC, Lever ABP (1996) Phthalocyanines: properties and applications, vol 1–4. VCH, New York

    Google Scholar 

  13. Mack J, Kobayashi N, Stillman MJ (2006) J Porphyr Phthalocyanines 10:1219

    Article  CAS  Google Scholar 

  14. Sakamoto K, Kato T, Okumura EO, Watanabe M, Cook MJ (2005) Dyes Pigm 64(1):63

    Article  CAS  Google Scholar 

  15. Arvand M, Pourhabib A, Shemshadi R (2007) Anal Bioanal Chem 387(3):1033

    Article  CAS  Google Scholar 

  16. Chen JC, Chen NS, Huang JF (2006) Inorganic Chem Commun 9(3):313

    Article  CAS  Google Scholar 

  17. Knawby DK, Swager TM (1997) Chem Mater 9:535–538

    Article  CAS  Google Scholar 

  18. Moser FH, Thomas AL (1983) The phthalocyanines, vol 1 & 2. CRC Press, Boca Raton, Florida

    Google Scholar 

  19. Keller TM, Price TK (1982) J Macromol Sci Chem 18:931

    Article  Google Scholar 

  20. Keller TM (1992) Polymer Prepr 33:422

    CAS  Google Scholar 

  21. Burchill PJ (1994) J Polym Sci A 32:1

    Article  CAS  Google Scholar 

  22. Keller TM, Griffith JR (1980) ACS Org Coat Plast Chem Prepr 43:804

    CAS  Google Scholar 

  23. Woehrle D, Schulte B (1988) Makromol Chem 189:1167

    Article  CAS  Google Scholar 

  24. Woehrle D, Schulte B (1989) Makromol Chem 190:1573

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2002) GAUSSIAN 03, Revision A.9. Gaussian, Inc., Pittsburgh

  26. Obirai J, Nyokong T (2005) Electrochim Acta 50:5427

    Article  CAS  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785

    Google Scholar 

  29. Karabacak M, Cinar M, Coruh A, Kurt M (2009) J Mol Struct 919:26

    Article  CAS  Google Scholar 

  30. Karabacak M, Kurt M, Cinar M, Coruh A (2009) Mol Phys 107(3):253

    Article  CAS  Google Scholar 

  31. Karabacak M, Cinar M, Ermec S, Kurt M (2010) J Raman Spectrosc 41(1):98

    Article  CAS  Google Scholar 

  32. Baker J, Jarzecki AA, Pulay P (1998) J Phys Chem A102:1412

    Google Scholar 

  33. Rauhut G, Pulay P (1995) J Phys Chem 99:3093

    Article  CAS  Google Scholar 

  34. Ditchfield R (1972) J Chem Phys 56:5688

    Article  CAS  Google Scholar 

  35. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  36. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  37. Petersilka M, Gossmann UJ, Gross EKU (1966) Phys Rev Lett 76:1212

    Article  Google Scholar 

  38. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  39. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134

    Article  CAS  Google Scholar 

  40. Dincer M, Agar A, Akdemir N, Agar E, Ozdemir N (2004) Acta Cryst E60:o79

    CAS  Google Scholar 

  41. Sundaraganesan N, Ilakiamani S, Saleem H, Wojciechowski PM, Michalska D (2005) Spectrochim Acta A 61:2995

    Article  CAS  Google Scholar 

  42. Keresztury G, Holly S, Varga J, Besenyei G, Wang AY, Durig JR (1993) Spectrochim Acta 49A:2007

    CAS  Google Scholar 

  43. Keresztury G, Chalmers JM, Griffith PR (eds) (2002) Raman spectroscopy: theory, hand book of vibrational spectroscopy, vol 1. Wiley, New York

    Google Scholar 

  44. Silverstein M, Basseler GC, Morill C (1981) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  45. Varsanyi G (1974) Assignments of vibrational spectra of 700 benzene derivatives. Wiley, New York

    Google Scholar 

  46. Pasternya K, Wrzalik R, Kupka T, Pasterna G (2002) J Mol Struct 614:297–304

    Article  Google Scholar 

  47. Lin–Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, Boston, MA

    Google Scholar 

  48. Zeng K, Zhou K, Tang WR, Tang Y, Zhou HF, Liu T, Wang YP, Zhou HB, Yang G (2007) Chin Chem Lett 18:523–526

    Article  CAS  Google Scholar 

  49. Zeng K, Zhou K, Zhou S, Hong H, Zhou H, Miao YWP, Yang G (2009) Eur Polym J 45:1328–1335

    Article  CAS  Google Scholar 

  50. Fukui K (1982) Science 218:747

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Karabacak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coruh, A., Yilmaz, F., Sengez, B. et al. Synthesis, molecular conformation, vibrational, electronic transition, and chemical shift assignments of 4-(thiophene-3-ylmethoxy)phthalonitrile: a combined experimental and theoretical analysis. Struct Chem 22, 45–56 (2011). https://doi.org/10.1007/s11224-010-9694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9694-7

Keywords

Navigation