Skip to main content
Log in

Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Large scientific community has been passionate in understanding different carbon nanostructures for last two decades. In this review, we present the general description of low-dimensional carbon allotropes such as fullerenes (0D), carbon nanotubes (1D), and graphene (2D). These structures have unique diversity of carbon–carbon bonds. Structures and electronic properties of fullerenes, small closed carbon cages, and giant fullerenes are illustrated. We point out the complexity in the area of fullerene research because of a wide range of structures and number of possible isomers of fullerenes. The concept of isolated pentagon rule in fullerenes is highlighted. We delineate the usefulness of pyramidalization angle in evaluating the curvature of fullerenes. The role of computational chemistry in identifying different isomers of fullerenes and validating the experimental results in ambiguous situations is also briefly mentioned. Properties of different types of carbon nanotubes, particularly single-walled carbon nanotubes (SWCNTs) and their structural features are summarized. The use of pyramidalization angle (θ P) and π-orbital misalignment angles in predicting the reactivity of different carbon atom sites of SWCNTs is discussed. Finally, we outline the structures and electronic properties of graphene, and discuss the status of experimental investigations of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. Noyes Publications, New Jersey, USA

    Google Scholar 

  2. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    CAS  Google Scholar 

  3. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    CAS  Google Scholar 

  5. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165

    CAS  Google Scholar 

  6. Poonjarernsilp C, Sano N, Tamon H, Charinpanitkul T (2009) J Appl Phys 106:104315

    Google Scholar 

  7. Zhou L, Gao C, Zhu DD, Xu W, Chen FF, Palkar A, Echegoyen L, Kong ES-W (2009) Chem Eur J 15:1389

    CAS  Google Scholar 

  8. Palkar A, Kumbhar A, Athans AJ, Echegoyen L (2008) Chem Mater 20:1685

    CAS  Google Scholar 

  9. Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, Hassanien A, Shandakov SD, Lolli G, Resasco DE, Choi M, Tomanek D, Kauppinen EI (2007) Nat Nanotechnol 2:156

    CAS  Google Scholar 

  10. Nasibulin AG, Anisimov AS, Pikhitsa PV, Jiang H, Brown DP, Choi M, Kauppinen EI (2007) Chem Phys Lett 446:109

    CAS  Google Scholar 

  11. He HY, Pan BC (2009) J Phys Chem C 113:20822

    CAS  Google Scholar 

  12. Wu X, Zeng XC (2009) Nano Lett 9:250

    CAS  Google Scholar 

  13. Smith BW, Monthioux M, Luzzi DE (1998) Nature 396:323

    CAS  Google Scholar 

  14. Li J, Wu C, Guan L (2009) J Phys Chem C 113:18431

    CAS  Google Scholar 

  15. Launois P, Chorro M, Verberck B, Albouy P-A, Rouziere S, Colson D, Foget A, Noe L, Kataura H, Monthioux M, Cambedouzou J (2010) Carbon 48:89

    CAS  Google Scholar 

  16. Chun H, Hahm MG, Homma Y, Meritz R, Kuramochi K, Menon L, Ci L, Ajayan PM, Jung YJ (2009) ACS Nano 3:1274

    CAS  Google Scholar 

  17. Liu J, Dai H, Hafner JH, Colbert DT, Smalley RE, Tans SJ, Dekker C (1997) Nature 385:780

    CAS  Google Scholar 

  18. Sano M, Kamino A, Okamura J, Shinkai S (2001) Science 293:1299

    CAS  Google Scholar 

  19. Leszczynski J (2010) Nat Nanotechnol 5:633

    CAS  Google Scholar 

  20. Xia X-R, Monteiro-Rivere NA, Riviere JE (2010) Nat Nanotechnol 5:671

    CAS  Google Scholar 

  21. Lu X, Chen Z (2005) Chem Rev 105:3643

    CAS  Google Scholar 

  22. Thilgen C, Diederich F (2006) Chem Rev 106:5049

    CAS  Google Scholar 

  23. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

    Google Scholar 

  24. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) J Chem Soc Chem Commun 1423

  25. Kagaku (1970) 25:854

  26. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, New York

    Google Scholar 

  27. Kroto HW, Allaf AW, Balm SP (1991) Chem Rev 91:1213

    CAS  Google Scholar 

  28. Smalley RE (1992) Acc Chem Res 25:98

    CAS  Google Scholar 

  29. Maruyama S, Yamaguch Y (1998) Chem Phys Lett 286:343

    CAS  Google Scholar 

  30. Heath JR (1991) ACS Symp Ser 24:1

    Google Scholar 

  31. Huang JY, Ding F, Jiao K, Yakobson BI (2007) Phys Rev Lett 99:175503

    CAS  Google Scholar 

  32. Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff Bv (2000) Nature 407:60

    CAS  Google Scholar 

  33. Scuseria GE (1996) Science 271:942

    CAS  Google Scholar 

  34. Shao N, Gao Y, Zeng XC (2007) J Phys Chem C 111:17671

    CAS  Google Scholar 

  35. Kroto W (1987) Nature 329:529

    CAS  Google Scholar 

  36. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113

    CAS  Google Scholar 

  37. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Nature 353:147

    CAS  Google Scholar 

  38. David VP, Lin X, Zhang H, Liu S, Kappes MM (1992) J Mater Res 7:2440

    Google Scholar 

  39. Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A (2002) Science 295:1500

    CAS  Google Scholar 

  40. Terrones M, Terrones G, Terrones H (2002) Struct Chem 13:373

    CAS  Google Scholar 

  41. Manolopoulos DE, Fowler PW (1992) J Chem Phys 96:7603

    CAS  Google Scholar 

  42. Brinkmann G, Dress AWM (1998) Adv Appl Math 21:473

    Google Scholar 

  43. Monolopoulos DE, Fowler PW (1991) Chem Phys Lett 187:1

    Google Scholar 

  44. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142

    CAS  Google Scholar 

  45. Shustova NB, Kuvychko IV, Bolskar RD, Seppelt K, Strauss SH, Popov AA, Boltalina OV (2006) J Am Chem Soc 128:15793

    CAS  Google Scholar 

  46. Shustova NB, Newell BS, Miller SM, Anderson OP, Bolskar RD, Seppelt K, Popov AA, Boltalina OV, Strauss SH (2007) Angew Chem Int Ed 46:4111

    CAS  Google Scholar 

  47. Amsharov KY, Jensen M (2008) J Org Chem 73:2931

    CAS  Google Scholar 

  48. Liu X, Klein DJ, Seitz WA, Schmalz TG (1991) J Comput Chem 12:1265

    CAS  Google Scholar 

  49. Aihara J (1995) J Am Chem Soc 117:4130

    CAS  Google Scholar 

  50. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M, Anz S, Sensharma D, Wudl F, Khemani KC, Koch A (1991) Science 252:548

    CAS  Google Scholar 

  51. Diederich F, Whetten RL, Thilgen C, Ettl R, Chao I, Alvarez MM (1991) Science 254:1768

    CAS  Google Scholar 

  52. Kikuchi K, Nakahara N, Wakabayashi T, Honda M, Matsumiya H, Moriwaki T, Suzuki S, Shiromaru H, Saito K, Yamauchi K, Ikemoto I, Achiba Y (1992) Chem Phys Lett 188:177

    CAS  Google Scholar 

  53. Taylor R, Langley GJ, Dennis TJS, Kroto HW, Walton DRM (1992) J Chem Soc Chem Commun 1043

  54. Taylor R, Langley GJ, Avent AG, Dennis TJS, Kroto HW, Walton DRM (1993) J Chem Soc Perkin Trans 2 1029

  55. Kimura T, Sugai T, Shinohara H, Goto T, Tohji K, Matsuoka I (1995) Chem Phys Lett 246:571

    CAS  Google Scholar 

  56. Miyake Y, Minami T, Kikuchi K, Kainosho M, Achiba Y (2000) Mol Cryst Liq Cryst 340:553

    CAS  Google Scholar 

  57. Burda C, Samia ACS, Hathcock DJ, Huang H, Yang S (2002) J Am Chem Soc 124:12400

    CAS  Google Scholar 

  58. Scheina S, Friedrich T (2008) Proc Natl Acad Sci USA 105:19142

    Google Scholar 

  59. Slanina Z, Uhlik F, Yoshida M, Osawa E (2000) Fullerene Sci Technol 8:417

    CAS  Google Scholar 

  60. Slanina Z, Zhao X, Deota P, Osawa E (2000) J Mol Model 6:312

    CAS  Google Scholar 

  61. Sun G, Kertesz M (2002) Chem Phys 276:107

    CAS  Google Scholar 

  62. Sun G (2003) Chem Phys Lett 367:26

    CAS  Google Scholar 

  63. Zhao X, Slanina Z, Goto H (2004) J Phys Chem A 108:4479

    CAS  Google Scholar 

  64. Zhao X, Goto H, Slanina Z (2004) Chem Phys 306:93

    CAS  Google Scholar 

  65. Shao N, Gao Y, Yoo S, An W, Zeng XC (2006) J Phys Chem A 110:7672

    CAS  Google Scholar 

  66. Okada S, Saito S (1996) Chem Phys Lett 252:94

    CAS  Google Scholar 

  67. Kroto HW, McKay KG (1988) Nature 331:328

    CAS  Google Scholar 

  68. Kroto HW (1990) Chem Br 26:40

    CAS  Google Scholar 

  69. Tang AC, Huang FQ (1995) Phys Rev B 51:13830

    Google Scholar 

  70. Tang AC, Li QS, Liu CW, Li J (1993) Chem Phys Lett 201:465

    CAS  Google Scholar 

  71. Gueorguiev GK, Pacheco JM, Tomanek D (2004) Phys Rev Lett 92:215501

    CAS  Google Scholar 

  72. Lopez-Urias F, Terrones M, Terrones H (2003) Chem Phys Lett 381:683

    CAS  Google Scholar 

  73. Dunlap BI, Brenner DW, Mintmire JW, Mowrey RC, White CT (1991) J Phys Chem 95:8737

    CAS  Google Scholar 

  74. Dulap BI, Zope RR (2006) Chem Phys Lett 422:451

    Google Scholar 

  75. Zope RR, Baruah T, Pederson MR, Dunlap BI (2008) Phys Rev B 77:115452

    Google Scholar 

  76. Calaminici P, Geudtner G, Koster AM (2009) J Chem Theory Comput 5:29

    CAS  Google Scholar 

  77. Haddon RC, Scott LT (1986) Pure Appl Chem 58:137

    CAS  Google Scholar 

  78. Haddon RC (1993) Science 261:1545

    CAS  Google Scholar 

  79. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Acc Chem Res 35:1105

    CAS  Google Scholar 

  80. Park S, Srivastava D, Cho K (2003) Nano Lett 3:1273

    CAS  Google Scholar 

  81. Cyranski MK, Howard ST, Chodkiewicz ML (2004) Chem Commun 2458

  82. MacKenzie KJ, See CH, Dunens OM, Harris AT (2008) Nat Nanotechnol 3:310

    CAS  Google Scholar 

  83. Radushkevich LV, Lukyanovich VM (1952) Zurn Fisic Chim 26:88

    CAS  Google Scholar 

  84. Oberlin A, Endo M, Koyama T (1976) J Cryst Growth 32:335

    CAS  Google Scholar 

  85. Monthioux M, Kuznetsov VL (2006) Carbon 44:1621

    CAS  Google Scholar 

  86. Iijima S (2007) Nat Nanotechnol 2:590

    Google Scholar 

  87. Iijima S, Ichihashi T (1993) Nature 363:603

    CAS  Google Scholar 

  88. Bethune DS, Klang C-H, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605

    CAS  Google Scholar 

  89. Dresselhaus MS, Dresselhaus G, Ph Avouris (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer-Verlag, Berlin

    Google Scholar 

  90. Ajayan PM (1999) Chem Rev 99:1787

    CAS  Google Scholar 

  91. Eder D (2010) Chem Rev 110:1348

    CAS  Google Scholar 

  92. Harris PJF (2003) Carbon nanotubes and related structures. Cambridge University Press, Cambridge, UK

    Google Scholar 

  93. Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68:1579

    CAS  Google Scholar 

  94. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204

    CAS  Google Scholar 

  95. Mintmire JW, Dunlap BI, White CT (1992) Phys Rev Lett 68:631

    CAS  Google Scholar 

  96. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Pimenta MA, Saito R (2002) Acc Chem Res 35:1070

    CAS  Google Scholar 

  97. Ouyang M, Huang J, Lieber CM (2002) Acc Chem Res 35:1018

    CAS  Google Scholar 

  98. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) J Phys Chem C 112:12706

    CAS  Google Scholar 

  99. Lu J, Yuan D, Liu J, Leng W, Kopley TE (2008) Nano Lett 8:3325

    CAS  Google Scholar 

  100. Strano MS (2003) J Am Chem Soc 125:16148

    CAS  Google Scholar 

  101. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Nat Nanotechnol 1:60

    CAS  Google Scholar 

  102. Strano MS (2007) Nat Nanotechnol 2:340

    CAS  Google Scholar 

  103. Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A (2007) Nat Nanotechnol 2:361

    CAS  Google Scholar 

  104. Pesce PBC, Araujo PT, Nikolaev P, Doorn SK, Hata K, Saito R, Dresselhaus MS, Jorio A (2010) Appl Phys Lett 96:051910

    Google Scholar 

  105. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Acc Chem Res 35:1054

    CAS  Google Scholar 

  106. Rao CNR, Voggu R, Govindaraj A (2009) Nanoscale 1:96

    CAS  Google Scholar 

  107. Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Science 326:116

    CAS  Google Scholar 

  108. Dresselhaus MS, Dresselhaus G, Jorio A (2007) J Phys Chem C 111:17887

    CAS  Google Scholar 

  109. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47

    Google Scholar 

  110. Zhang J, Zuo JM (2009) Carbon 47:3515

    CAS  Google Scholar 

  111. Rao F, Li T, Wang Y (2009) Carbon 47:3580

    CAS  Google Scholar 

  112. Matsuo Y, Tahara K, Nakamura E (2003) Org Lett 5:3181

    CAS  Google Scholar 

  113. Cioslowski J, Rao N, Moncrieff D (2002) J Am Chem Soc 124:8485

    CAS  Google Scholar 

  114. Bahr JL, Tour JM (2002) J Mater Chem 12:1952

    CAS  Google Scholar 

  115. Hirsch A (2002) Angew Chem Int Ed 41:1853

    CAS  Google Scholar 

  116. Vostrowsky O, Hirsch A (2004) Angew Chem Int Ed 43:2326

    CAS  Google Scholar 

  117. Dinadayalane TC, Kaczmarek A, Łukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376

    CAS  Google Scholar 

  118. Kaczmarek A, Dinadayalane TC, Łukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211

    CAS  Google Scholar 

  119. Dinadayalane TC, Leszczynski J (2009) Toward understanding of hydrogen storage in single-walled carbon nanotubes by chemisorption mechanism. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry: methods, concepts and applications. Springer, Netherlands, p 297

    Google Scholar 

  120. Galano A (2006) Chem Phys 327:159

    CAS  Google Scholar 

  121. Bettinger HF (2004) Org Lett 6:731

    CAS  Google Scholar 

  122. Yang FH, Lachawiec AJ Jr, Yang RT (2006) J Phys Chem B 110:6236

    CAS  Google Scholar 

  123. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86

    CAS  Google Scholar 

  124. Dinadayalane TC, Leszczynski J (2007) Toward nanomaterials: structural, energetic and reactivity aspects of single-walled carbon nanotubes. In: Balbuena PB, Seminario JM (eds) Nanomaterials: design and simulation. Theoretical and computational chemistry, vol 18. Elsevier, Amsterdam, p 167

  125. Andzelm J, Govind N, Maiti A (2006) Chem Phys Lett 421:58

    CAS  Google Scholar 

  126. Yang SH, Shin WH, Lee JW, Kim SY, Woo SI, Kang JK (2006) J Phys Chem B 110:13941

    CAS  Google Scholar 

  127. Nishidate K, Hasegawa M (2005) Phys Rev B 71:245418

    Google Scholar 

  128. Bettinger HF (2005) J Phys Chem B 109:6922

    CAS  Google Scholar 

  129. Lu X, Chen Z, Schleyer PvR (2005) J Am Chem Soc 127:20

    CAS  Google Scholar 

  130. Stewart JJP (1989) J Comput Chem 10:209

    CAS  Google Scholar 

  131. Stewart JJP (1989) J Comput Chem 10:221

    CAS  Google Scholar 

  132. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.3. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  133. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  134. Chen Z, Thiel W, Hirsch A (2003) ChemPhysChem 4:93

    CAS  Google Scholar 

  135. Politzer P, Lane P, Concha MC, Murray JS (2005) Microelectron Eng 81:485

    CAS  Google Scholar 

  136. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) J Mol Model 11:258

    CAS  Google Scholar 

  137. Xiao D, Bulat FA, Yang W, Beratan DN (2008) Nano Lett 8:2814

    CAS  Google Scholar 

  138. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351

    CAS  Google Scholar 

  139. Sjoberg P, Brinck T (1991, 1993) HardSurf program, Ph.D. Dissertation, University of New Orleans, New Orleans, LA

  140. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    CAS  Google Scholar 

  141. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902

    CAS  Google Scholar 

  142. Geim AK (2009) Science 324:1530

    CAS  Google Scholar 

  143. Soldano C, Mahmood A, Dujardin E (2010) Carbon 48:2127

    CAS  Google Scholar 

  144. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    CAS  Google Scholar 

  145. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    CAS  Google Scholar 

  146. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Science 320:356

    CAS  Google Scholar 

  147. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451

    CAS  Google Scholar 

  148. Zhang Y, Tang T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Nature 459:820

    CAS  Google Scholar 

  149. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Science 319:1229

    CAS  Google Scholar 

  150. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109

    Google Scholar 

  151. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    CAS  Google Scholar 

  152. Carlson JM, Scheffler M (2006) Phys Rev Lett 96:046806

    Google Scholar 

  153. Jiang D, Cooper VR, Dai S (2009) Nano Lett 9:4019

    CAS  Google Scholar 

  154. Zhu ZH, Hatori H, Wang SB, Lu GQ (2005) J Phys Chem B 109:16744

    CAS  Google Scholar 

  155. Miwa RH, Martins TB, Fazzio A (2008) Nanotechnology 19:155708

    Google Scholar 

  156. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommine MF, Zettl A (2008) Nano Lett 8:3582

    CAS  Google Scholar 

  157. Lherbier A, Blase X, Niquet Y-M, Triozon N, Roche S (2008) Phys Rev Lett 101:036808

    Google Scholar 

  158. Carpio A, Bonilla LL, de Juan F, Vozmediano MAH (2008) New J Phys 10:053021

    Google Scholar 

  159. Boukhvalov DW, Katsnelson MI (2008) Nano Lett 8:4373

    CAS  Google Scholar 

  160. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610

    CAS  Google Scholar 

  161. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401

    Google Scholar 

  162. Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L (2009) J Am Chem Soc 131:8744

    CAS  Google Scholar 

  163. Casolo S, Lovvik OM, Martinazzo R, Tantardini GF (2009) J Chem Phys 130:054704

    Google Scholar 

  164. Ferro Y, Teillet-Billy D, Rougeau N, Sidis V, Morisset S, Allouche A (2008) Phys Rev B 78:8

    Google Scholar 

  165. Hornekaer L, Sljivancanin Z, Xu W, Otero R, Rauls E, Stensgaard I, Laegsgaard E, Hammer B, Besenbacher F (2006) Phys Rev Lett 96:156104

    CAS  Google Scholar 

  166. Peralta-Inga Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) J Mol Struct (Theochem) 549:147

    CAS  Google Scholar 

  167. Sharma R, Nair N, Strano MS (2009) J Phys Chem C 113:14771

    CAS  Google Scholar 

  168. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Nano Lett 10:398

    CAS  Google Scholar 

  169. Tachikawa H, Kawabata H (2009) J Phys Chem C 113:7603

    CAS  Google Scholar 

  170. Novoselov K (2007) Nat Mater 6:720

    CAS  Google Scholar 

  171. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the High Performance Computational Design of Novel Materials (HPCDNM) Project funded by the Department of Defense (DoD) through the U.S. Army/Engineer Research and Development Center (Vicksburg, MS); Contract # W912HZ-09-C-0108 and by the Office of Naval Research (ONR) Grant # N000141010076. We also thank support from the National Science Foundation (NSF) for Interdisciplinary Center for Nanotoxicity (ICN) through CREST Grant HRD-0833178. We thank reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. C. Dinadayalane or Jerzy Leszczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinadayalane, T.C., Leszczynski, J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Struct Chem 21, 1155–1169 (2010). https://doi.org/10.1007/s11224-010-9670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9670-2

Keywords

Navigation