Skip to main content
Log in

Crystal structures of crown ethers containing an alkyl diarylphosphinate or a diarylphosphinic acid unit

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the structures of pseudo-18-crown-6 compounds (2, R,R-4 and 5) in the crystals together with theoretical calculations of the electronic circular dichroism (ECD) spectra. The achiral macrocyclic phosphinic acid 5 forms hydrogen-bonded dimers in the crystal. The O1–O2 distance (2.489 Ǻ) indicates strong H-bondings. The conformations of the macrorings of the achiral phosphinate 2 and the monomers of the achiral phosphinic acid 5 are chiral. A comparison of the torsion angles of the achiral methyl phosphinate 2 and the monomeric units of achiral 5 indicates a similar geometry. The torsion angles of the chiral methyl phosphinate (R,R)-4 differ more significantly from those in achiral methyl phosphinate 2. A negative 1Bb exciton couplet was observed in the ECD spectrum of monomeric (R,R)-6 in MeOH and H2O as in the spectra of (R,R)-4 in all solvents. To support the idea that (R,R)-4 has basically the same conformation in the crystal and in solution, the ECD spectrum of (R,R)-4 was calculated using the geometry of the molecule in the crystal. The calculated ECD spectrum shows a reasonable agreement with the ECD spectra obtained in solution. This shows that the steric structure observed in the crystal is predominant in solution as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Samu E, Huszthy P, Somogyi L, Hollósi M (1999) Tetrahedron-Asymm 10:2775

    Article  CAS  Google Scholar 

  2. Farkas V, Szalay L, Vass E, Hollósi M, Horváth G, Huszthy P (2003) Chirality 15:S65

    Article  CAS  Google Scholar 

  3. Lakatos S, Fetter J, Bertha F, Huszthy P, Tóth T, Farkas V, Orosz G, Hollósi M (2008) Tetrahedron 64:1012

    Article  CAS  Google Scholar 

  4. Huszthy P, Farkas V, Tóth T, Székely G, Hollósi M (2008) Tetrahedron 64:10107

    Article  CAS  Google Scholar 

  5. Reis AH, Peterson SW, Druyan ME, Gebert E, Mason GW, Peppard DF (1976) Inorg Chem 15:2748

    Article  CAS  Google Scholar 

  6. Druyan ME, Reis AH, Gebert E, Peterson SW, Mason GW, Peppard DF (1976) J Am Chem Soc 98:4801

    Article  CAS  Google Scholar 

  7. Gonzalez L, Mo O, Yanez M, Elguero R (1998) J Chem Phys 109:2685

    Article  CAS  Google Scholar 

  8. Asfin RE, Denisov GS, Poplevchenkov DN, Tokhadze KG, Velikanova TV (2002) Pol J Chem 76:1223

    CAS  Google Scholar 

  9. Asfin RE, Denisov GS, Tokhadze KG (2002) J Mol Struct 608:161

    Article  CAS  Google Scholar 

  10. Picazo O, Alkorta I, Elguero J, Mo O, Yanez M (2005) J Phys Org Chem 18:491

    Article  CAS  Google Scholar 

  11. Asfin RE, Denisov GS, Mielke Z, Tokhadze KG (2005) Opt Spectr 99:56

    Article  CAS  Google Scholar 

  12. Asfin RE, Denisov GS, Tokhadze KG (2006) J Mol Struct 790:11

    Article  CAS  Google Scholar 

  13. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Cryst 38:381

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) Acta Cryst Sect A64:112

    Article  CAS  Google Scholar 

  15. Hooft RWW, Straver LH, Spek AL (2008) J Appl Cryst 41:96

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas Ö, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian, Inc.: Wallingford, CT, 2004

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA K62654 to P.H., PD71817 to V.F., PD71910 to T.T. and NI68466 to M.H.) and GVOP-3.2.1-2004-04-0345/3.0. The HPC Group computer facility, University of Szeged was used for several computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Huszthy.

Additional information

Dedicated to Professor Károly Lempert on the occasion of his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Székely, G., Farkas, V., Párkányi, L. et al. Crystal structures of crown ethers containing an alkyl diarylphosphinate or a diarylphosphinic acid unit. Struct Chem 21, 277–282 (2010). https://doi.org/10.1007/s11224-010-9581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9581-2

Keywords

Navigation