Advertisement

Structural Chemistry

, Volume 21, Issue 1, pp 277–282 | Cite as

Crystal structures of crown ethers containing an alkyl diarylphosphinate or a diarylphosphinic acid unit

  • György Székely
  • Viktor Farkas
  • László Párkányi
  • Tünde Tóth
  • Miklós Hollósi
  • Péter Huszthy
Original Research

Abstract

This paper describes the structures of pseudo-18-crown-6 compounds (2, R,R-4 and 5) in the crystals together with theoretical calculations of the electronic circular dichroism (ECD) spectra. The achiral macrocyclic phosphinic acid 5 forms hydrogen-bonded dimers in the crystal. The O1–O2 distance (2.489 Ǻ) indicates strong H-bondings. The conformations of the macrorings of the achiral phosphinate 2 and the monomers of the achiral phosphinic acid 5 are chiral. A comparison of the torsion angles of the achiral methyl phosphinate 2 and the monomeric units of achiral 5 indicates a similar geometry. The torsion angles of the chiral methyl phosphinate (R,R)-4 differ more significantly from those in achiral methyl phosphinate 2. A negative 1Bb exciton couplet was observed in the ECD spectrum of monomeric (R,R)-6 in MeOH and H2O as in the spectra of (R,R)-4 in all solvents. To support the idea that (R,R)-4 has basically the same conformation in the crystal and in solution, the ECD spectrum of (R,R)-4 was calculated using the geometry of the molecule in the crystal. The calculated ECD spectrum shows a reasonable agreement with the ECD spectra obtained in solution. This shows that the steric structure observed in the crystal is predominant in solution as well.

Keywords

Crown ethers Diarylphosphinates Diarylphosphinic acids X-ray analysis Computed ECD spectra 

Notes

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA K62654 to P.H., PD71817 to V.F., PD71910 to T.T. and NI68466 to M.H.) and GVOP-3.2.1-2004-04-0345/3.0. The HPC Group computer facility, University of Szeged was used for several computations.

References

  1. 1.
    Samu E, Huszthy P, Somogyi L, Hollósi M (1999) Tetrahedron-Asymm 10:2775CrossRefGoogle Scholar
  2. 2.
    Farkas V, Szalay L, Vass E, Hollósi M, Horváth G, Huszthy P (2003) Chirality 15:S65CrossRefGoogle Scholar
  3. 3.
    Lakatos S, Fetter J, Bertha F, Huszthy P, Tóth T, Farkas V, Orosz G, Hollósi M (2008) Tetrahedron 64:1012CrossRefGoogle Scholar
  4. 4.
    Huszthy P, Farkas V, Tóth T, Székely G, Hollósi M (2008) Tetrahedron 64:10107CrossRefGoogle Scholar
  5. 5.
    Reis AH, Peterson SW, Druyan ME, Gebert E, Mason GW, Peppard DF (1976) Inorg Chem 15:2748CrossRefGoogle Scholar
  6. 6.
    Druyan ME, Reis AH, Gebert E, Peterson SW, Mason GW, Peppard DF (1976) J Am Chem Soc 98:4801CrossRefGoogle Scholar
  7. 7.
    Gonzalez L, Mo O, Yanez M, Elguero R (1998) J Chem Phys 109:2685CrossRefGoogle Scholar
  8. 8.
    Asfin RE, Denisov GS, Poplevchenkov DN, Tokhadze KG, Velikanova TV (2002) Pol J Chem 76:1223Google Scholar
  9. 9.
    Asfin RE, Denisov GS, Tokhadze KG (2002) J Mol Struct 608:161CrossRefGoogle Scholar
  10. 10.
    Picazo O, Alkorta I, Elguero J, Mo O, Yanez M (2005) J Phys Org Chem 18:491CrossRefGoogle Scholar
  11. 11.
    Asfin RE, Denisov GS, Mielke Z, Tokhadze KG (2005) Opt Spectr 99:56CrossRefGoogle Scholar
  12. 12.
    Asfin RE, Denisov GS, Tokhadze KG (2006) J Mol Struct 790:11CrossRefGoogle Scholar
  13. 13.
    Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Cryst 38:381CrossRefGoogle Scholar
  14. 14.
    Sheldrick GM (2008) Acta Cryst Sect A64:112CrossRefGoogle Scholar
  15. 15.
    Hooft RWW, Straver LH, Spek AL (2008) J Appl Cryst 41:96CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas Ö, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian, Inc.: Wallingford, CT, 2004Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • György Székely
    • 1
  • Viktor Farkas
    • 2
    • 3
  • László Párkányi
    • 4
  • Tünde Tóth
    • 5
  • Miklós Hollósi
    • 2
  • Péter Huszthy
    • 1
    • 5
  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Laboratory for Chiroptical Structure Analysis, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  3. 3.Protein Modelling Group, Hungarian Academy of SciencesEötvös Loránd UniversityBudapestHungary
  4. 4.Institute of Structural ChemistryChemical Research Center of the Hungarian Academy of SciencesBudapestHungary
  5. 5.Research Group for Alkaloid Chemistry of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations