Structural Chemistry

, Volume 20, Issue 4, pp 693–697 | Cite as

Paradoxes and paradigms: why is quinoline less basic than pyridine or isoquinoline? A classical organic chemical perspective

Original Research

Abstract

An explanation for the reported lower basicity of quinoline as compared with pyridine or isoquinoline has been provided. The competing roles of steric hindrance and solvation effects are discussed along with resonance stabilization of neutral molecules and related ions.

Keywords

pKa values Peri effect Heterocycles Steric effect Gas phase basicities Enthalpy of formation 

References

  1. 1.
    Albert A, Phillips JN (1956) J Chem Soc 1294. doi: 10.1039/jr9560001294
  2. 2.
    Mason SF (1958) J Chem Soc 674. doi: 10.1039/jr9580000674
  3. 3.
    Brown HC, Mihm XR (1955) J Am Chem Soc 77:1723. doi:10.1021/ja01612a002 CrossRefGoogle Scholar
  4. 4.
    Grandberg II, Faizova GK, Kost AN (1966) Khim Geterotsikl Soedin 561; Chem Abstr 66:10453Google Scholar
  5. 5.
    Brown HC et al (1955) In: Braude EA, Nachod FC (eds) Determination of organic structures by physical methods, Academic Press, New YorkGoogle Scholar
  6. 6.
    Brown HC, Kanner B (1966) J Am Chem Soc 88:986. doi:10.1021/ja00957a023 CrossRefGoogle Scholar
  7. 7.
    Arnett EM, Chawla B (1979) J Am Chem Soc 101:7141. doi:10.1021/ja00518a001 CrossRefGoogle Scholar
  8. 8.
    Hopkins HP Jr, Jahagirdar DV, Moulik PS, Aue DH, Webb HM, Davidson WR, Pedley MD (1984) J Am Chem Soc 106:4341. doi:10.1021/ja00328a007 CrossRefGoogle Scholar
  9. 9.
    Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413CrossRefGoogle Scholar
  10. 10.
    Pedley JB (1994) Thermochemical data and structures of organic compounds. Vol 1. TRC Data Series, College Station, TexasGoogle Scholar
  11. 11.
    Speros DM, Rossini FD (1960) J Phys Chem 64:1723. doi:10.1021/j100840a029 CrossRefGoogle Scholar
  12. 12.
    Ribeiro da Silva MAV, Amaral LMPF, Santos AFLOM, Gomes JRB (2006) J Chem Thermodyn 38:367. doi:10.1016/j.jct.2005.06.001 CrossRefGoogle Scholar
  13. 13.
    Roux MV, Temprado M, Chickos JS, Nagano Y (2008) J Phys Chem Ref Data 37:1855. doi:10.1063/1.2955570 CrossRefGoogle Scholar
  14. 14.
    Nesterova TN, Verevkin SP, Karaseva SY, Rozhnov AM, Tsvetkov VF (1984) Russ J Phys Chem 58:297 Engl TranslGoogle Scholar
  15. 15.
    Arnett EM, Sanda JC, Bollinger JM, Barber M (1967) J Am Chem Soc 89:5389. doi:10.1021/ja00997a016 CrossRefGoogle Scholar
  16. 16.
    Krueerke U, Hoogzand C, Huebel W, Vanhee G (1961) Chem Ber 94:2817. doi:10.1002/cber.19610941102 CrossRefGoogle Scholar
  17. 17.
    Chickos JS, Hyman AS, Ladon LH, Liebman JF (1981) J Org Chem 46:4294. doi:10.1021/jo00334a040 CrossRefGoogle Scholar
  18. 18.
    Tasi G, Mizukami F, Toba M, Niwa S, Palinko I (2000) J Phys Chem A 104:1337. doi:10.1021/jp9939322 CrossRefGoogle Scholar
  19. 19.
    Penner GH, Chang YCP, Nechala P, Froese R (1999) J Org Chem 64:447. doi:10.1021/jo981402g CrossRefGoogle Scholar
  20. 20.
    Kraljic I, Mintas M, Klasinc L, Ranogajec F, Guesten H (1983) Nouv J Chim 7:239Google Scholar
  21. 21.
    Abdul-Ghani AJ, Bashi NOT, Maree SN (1987) J Sol Energy Res 5:53Google Scholar
  22. 22.
    Fu PP, Harvey RG (1977) J Org Chem 42:2407. doi:10.1021/jo00434a013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandBaltimoreUSA

Personalised recommendations