Skip to main content
Log in

Effects of fused benzene rings on tautomerizations and inversions of benzo, azabenzo, and oxabenzocycloheptatrienes at theoretical levels

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Biologically important bicyclic species, including 6H-, 6H-6-aza-, and 6-oxabenzocycloheptatrienes (in which the benzene moiety is fused meta with respect to the tetrahedral constituents: –CH2–, –NH–, and –O–, respectively), show strong shifts of tautomerizations in favor of the corresponding tricyclic benzonorcaradienes (with ΔH values of −11.49, −14.55, and −19.20 kcal mol−1, respectively), at B3LYP/6-311++G**//B3LYP/6-31G*, and MP2/6-311++G**//MP2/6-31G* levels, and at 298 K. In contrast, such shifts are strongly disfavored by the isomeric bicyclic species in which the benzene moieties are fused ortho or para with respect to –CH2–, –NH–, and –O–, respectively. Hence for species with ortho benzene rings including 5H-, 5H-5-aza- and 5-oxabenzocycloheptatrienes, tautomerization ΔH values are 30.76, 31.89, and 25.27 kcal mol−1, respectively, while for species with para fused benzene moieties including 7H-, 7H-7-aza-, and 7-oxabenzocycloheptatrienes, tautomerization ΔH values are 24.12, 26.00, and 19.55 kcal mol−1, respectively. NICS calculations are successfully used to rationalize these results. The calculated energy barriers for inversion of the seven-membered rings of bicyclic species predict a dynamic nature for all the structures except for the virtually planar 6H-6-aza- and 6-oxabenzocycloheptatrienes. Finally, our theoretical data are compared to the experimental results where available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Pomerantz M, Gruber GW (1967) J Am Chem Soc 89:6798. doi:10.1021/ja01001a093

    Article  CAS  Google Scholar 

  2. Pomerantz M, Gruber GW (1967) J Am Chem Soc 89:6799. doi:10.1021/ja01001a094

    Article  CAS  Google Scholar 

  3. Pomerantz M, Gruber GW (1968) J Org Chem 33:4501. doi:10.1021/jo01276a043

    Article  CAS  Google Scholar 

  4. Madigan DM, Swenton JS (1970) J Am Chem Soc 92:7513. doi:10.1021/ja00728a069

    Article  Google Scholar 

  5. Madigan DM, Swenton JS (1971) J Am Chem Soc 93:6316. doi:10.1021/ja00752a080

    Article  CAS  Google Scholar 

  6. Pomerantz M, Ross AS, Gruber GW (1972) J Am Chem Soc 94:1403. doi:10.1021/ja00759a086

    Article  CAS  Google Scholar 

  7. Wong S, Sasso S, Jones H, Kaminski JJ (1984) J Med Chem 27:20. doi:10.1021/jm00367a005

    Article  CAS  Google Scholar 

  8. Güney M, Daştan A, Balci M (2005) Helv Chim Acta 88:830. doi:10.1002/hlca.200590061

    Article  Google Scholar 

  9. Parkhunt KM, Sturm PA, Johnson H, Skinner WA (1973) J Med Chem 16:1395

    Google Scholar 

  10. Rodriguez-Hahn L, Esquivel B, Sánchez A, Cárdenas J, Tovar OG, Soriano-Garcia M, Toscano A (1988) J Org Chem 53:3933. doi:10.1021/jo00252a010

    Article  CAS  Google Scholar 

  11. Kassaee MZ, Arshadi S, Ahmadi-Taheri N (2005) J Mol Struct Theochem 715:107. doi:10.1016/j.theochem.2004.11.015

    Article  CAS  Google Scholar 

  12. Kassaee MZ, Arshadi S, Haerizade BN, Vessally E (2005) J Mol Struct Theochem 731:29. doi:10.1016/j.theochem.2005.02.087

    Article  CAS  Google Scholar 

  13. Kassaee MZ, Musavi SM, Majdi M, Cheshmehkani A, Motamedi E, Aghaee A (2008) J Mol Struct Theochem 848:67. doi:10.1016/j.theochem.2007.09.012

    Article  CAS  Google Scholar 

  14. Kassaee MZ, Musavi SM, Momeni MR, Shakib FA, Ghambarian M (2008) J Mol Struct (Theochem) 861:117

    Article  CAS  Google Scholar 

  15. Kassaee MZ, Musavi SM, Majdi M (2009). Struct Chem. doi:10.1007/s11224-008-9396-6

  16. Kouznetsov V, Palma A, Ewert C (2001) Curr Org Chem 5:519. doi:10.2174/1385272013375391

    Article  CAS  Google Scholar 

  17. Berger JG, Chang WK, Clader JW, Hou D, Chipkin RE, McPhail AT (1989) J Med Chem 32:1913. doi:10.1021/jm00128a038

    Article  CAS  Google Scholar 

  18. Chumpradit S, Kung M, Billings JJ, Kung HF (1991) J Med Chem 34:877. doi:10.1021/jm00107a002

    Article  CAS  Google Scholar 

  19. Chipkin RE, Iorio LC, Coffin VL, Mcquade RD, Berger GJ, Barnett A (1988) J Pharmacol 24:1039

    Google Scholar 

  20. Wu G, Wong Y, Steinman M, Tormos W, Schumacher DP, Love GM, Shutts B (1997) Org Process Res Dev 1:359. doi:10.1021/op970105v

    Article  CAS  Google Scholar 

  21. Draper RW, Hou D, Iyer R, Lee GM, Liang JT, Mas JL, Tormos W, Vater EJ (1998) Org Process Res Dev 2:175. doi:10.1021/op970121s

    Article  CAS  Google Scholar 

  22. Corbel JC, Uriac P, Huet J, Martin CAE, Advenier C (1995) Eur J Med Chem 30:3. doi:10.1016/0223-5234(96)88204-3

    Article  CAS  Google Scholar 

  23. Macías FA, Varela RM, Torres A, Molinillon JMG (1999) Tetrahedron Lett 40:4725. doi:10.1016/S0040-4039(99)00833-3

    Article  Google Scholar 

  24. Wijnberg JBPA, van Veldhuizen A, Swarts HJ, Frankland JC, Field JA (1999) Tetrahedron Lett 40:5767. doi:10.1016/S0040-4039(99)01074-6

    Article  CAS  Google Scholar 

  25. Asakawa Y, Hashimoto T, Takikawa K, Tori M, Ogawa S (1991) Phytochemistry 30:235. doi:10.1016/0031-9422(91)84130-K

    Article  CAS  Google Scholar 

  26. Mericüli F, Mericüli AH, Becker H, Ulubelen A (1996) Phytochemistry 42:1257. doi:10.1016/0031-9422(96)00121-5

    Article  Google Scholar 

  27. Vyvyan JR, Looper RE (2000) Tetrahedron Lett 41:1151. doi:10.1016/S0040-4039(99)02284-4

    Article  CAS  Google Scholar 

  28. Liu J, Steigel A, Reininger E, Bauer R (2000) J Nat Prod 63:403. doi:10.1021/np990362o

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG Jr, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelly C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) 98. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  30. Moller C, Plesset MS (1934) Phys Rev 46:618. doi:10.1103/PhysRev.46.618

    Article  CAS  Google Scholar 

  31. Krishan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244. doi:10.1063/1.439657

    Article  Google Scholar 

  32. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Slater JC (1974) Quantum theory of molecules and solids. McGraw Hill, New York

    Google Scholar 

  36. Vosco SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  Google Scholar 

  37. Hariharan PC, Pople JA (1974) Mol Phys 27:209. doi:10.1080/00268977400100171

    Article  CAS  Google Scholar 

  38. Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431. doi:10.1021/jp0740503

    Article  CAS  Google Scholar 

  39. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317. doi:10.1021/ja960582d

    Article  CAS  Google Scholar 

  40. Chesnut DB, Moore KD (1985) J Comput Chem 10:648. doi:10.1002/jcc.540100507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Electronic supplementary material

B3LYP/6-311++G**//B3LYP/6-31G* calculated nuclear independent chemical shifts (NICS) also B3LYP/6-31G* and MP2/6-31G* calculated xyz coordinates of optimized structures for all molecules studied in this work are presented (49 pages).

(DOC 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassaee, M.Z., Momeni, M.R., Shakib, F.A. et al. Effects of fused benzene rings on tautomerizations and inversions of benzo, azabenzo, and oxabenzocycloheptatrienes at theoretical levels. Struct Chem 20, 517–524 (2009). https://doi.org/10.1007/s11224-009-9451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9451-y

Keywords

Navigation