Skip to main content

Advertisement

Log in

Size Effect on Tensile Properties of Cold-Rolled ASS-304 Sheets at Various Service Temperatures

  • Published:
Strength of Materials Aims and scope

To investigate the relationship between service temperature ranging from –40~250℃, and size effect on tensile properties of thin ASS-304 sheets with nine different thicknesses (40~500 μm), uniaxial tensile tests were performed on thin ASS-304 sheets of the same average grain size in the present study. Within the thickness range of 40 to 300 μm, corresponding to η = t/d values from 1.1 to 8.1. The ultimate tensile strength (UTS), yield strength (YS), and elongation (EL) of ASS-304 exhibits a dimensional effect of “the thinner, the stronger”. For example, as the η increases from 1.1 to 8.1, the UTS rapidly decreased from 1798.8 to 839.0 MPa at 20℃, from 1703.1 to 526.9 MPa at 150℃, and from 1661.2 to 478.9 MPa at 250℃, attenuation of 53.36, 69.06, and 71.17%, respectively. Meanwhile, the YS at 20℃ are separately 1768.9 to 418.7 MPa with 1695.2 to 343.3 MPa at 150℃ as well as 1645.7 to 330.1 MPa at 250°C, decrease the proportion of 76.33%, 79.75% and 79.94% respectively. Notably, the UTS, YS, and EL at 150 and 250℃ are lower than those at 20℃. The true stress value of ASS-304 was enhanced at –20 and –40℃, and the true strain increases first and then weakens as the thickness increases, the reason is the transformation- induced-plasticity (TRIP) effect of ASS-304 in stretching. The asymptotic function describes the relationship between strength and the values of η, while the Chapman function represents the relationship between elongation and the η. A linear variation exists between service temperature and tensile properties. And relevant empirical equations including T-η- and T-η-tensile properties were established, which can predict the UTS, YS, and EL of thin ASS-304 sheets under different service temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Geiger, M. Kleiner, R. Eckstein, et al., “Microforming,” CIRP Ann Manuf Technol, 50, No. 7, 445–462 (2001).

    Article  Google Scholar 

  2. Y. Hu, P. Kumar, R. Xu, et al., “Ultrafast direct fabrication of flexible substrate supported designer plasmonic nanoarrays,” Nanoscale, 8, 172–182 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. A. R. Razali and Y. Qin, “A review on micro-manufacturing, micro-forming and their key issues,” Proc Eng, 53, 665–672 (2013).

    Article  Google Scholar 

  4. D. K. Leu, “Distinguishing micro-scale from macro-scale tensile flow stress of sheet metals in microforming,” Mater Design, 87, 773–779 (2015).

    Article  Google Scholar 

  5. M. W. Fu and W. L. Chan, “A review on the state-of-the-art microforming technologies,” Int J Adv Manuf Technol, 67, Nos. 9–12, 2411–2437 (2013).

    Article  Google Scholar 

  6. J. Michel and P. Picart, “Size effects on the constitutive behaviour for brass in sheet metal forming,” J Mater Proc Technol, 141, No. 3, 439–446 (2003).

    Article  CAS  Google Scholar 

  7. A. Molotnikov, R. Lapovok, C. H. J. Davies, et al., “Size effect on the tensile strength of fine-grained copper,” Scripta Mater, 59, No. 11, 1182–1185 (2008).

    Article  CAS  Google Scholar 

  8. A. Molotnikov, R. Lapovok, C. F. Gu, et al., “Size effects in micro cup drawing,” Mater Sci Eng A, 550, 312–319 (2012).

    Article  CAS  Google Scholar 

  9. W. L. Chan, M. W. Fu, J. Lu, et al., “Modeling of grain size effect on micro-deformation behavior in microforming of pure copper,” Mater Sci Eng A, 527, Nos. 24–25, 6638–6648 (2010).

    Article  Google Scholar 

  10. M. W. Fu and W. L. Chan, “Geometry and grain size effects on the fracture behavior of sheet metal in microscale plastic deformation,” Mater Design, 32, No. 10, 4738–4746 (2011).

    Article  Google Scholar 

  11. S. Guo, Y. Y. Xie, J. Lei, et al., “Coupled effect of specimen size and grain size on the stress relaxation of micron-sized copper wires,” J Mater Sci, 57, No. 39, 18655–18668 (2022).

    Article  ADS  CAS  Google Scholar 

  12. W. L. He, B. Meng, L. H. Zheng, et al., “Size effect on the cyclic deformation behavior of superalloy ultrathin sheet: characterization and multiscale modelling,” Int J Plasticity, 163, 103566 (2023).

    Article  CAS  Google Scholar 

  13. X. X. Chen and A. H. W. Ngan, “Specimen size and grain size effects on tensile strength of Ag microwires,” Scripta Mater, 64, No. 8, 717–720 (2011).

    Article  CAS  Google Scholar 

  14. P. Kori, B. H. Vadavadagi, and R. K. Khatirkar, “Hot deformation characteristics of ASS-304 austenitic stainless steel by tensile tests,” Mater Today-Proc, 28, No. 3, 1895–1898 (2020).

    Article  CAS  Google Scholar 

  15. J. Qian, H. Wang, J. Li, et al., “High temperature tensile fracture behavior of copper-containing austenitic antibacterial stainless steel,” Materials, 15, No. 4, 1297 (2022).

    Google Scholar 

  16. J. Kim, Y. M. Choi, K. Okamoto, et al., “Prediction of buckling failure load of 304 stainless-steel column at elevated temperatures using lead-antimony alloys,” Eng Fail Anal, 139, 106480 (2022).

    Article  CAS  Google Scholar 

  17. M. D. Liu, J. F. Nie, and P. D. Lin, “Experimental and numerical analysis of the uniaxial tensile properties of F321 austenitic stainless steel at different temperatures,” Acta Mech Solida Sin, 35, No. 3, 409–420 (2022).

    Article  Google Scholar 

  18. M. Calmunger, G. Chai, R. Eriksson, et al., “Characterization of austenitic stainless steels deformed at elevated temperature,” Metall Mater Trans A, 48, No. 10, 4525–4538 (2017).

    Article  CAS  Google Scholar 

  19. Y. C. Zhao, M. N. Cinbiz, J. S. Park, et al., “Tensile behavior and microstructural evolution of a Fe-25Ni-20Cr austenitic stainless steel (alloy 709) from room to elevated temperatures through in-situ synchrotron X-ray diffraction characterization and transmission electron microscopy,” J Nucl Mater, 540, 152367 (2020).

    Article  CAS  Google Scholar 

  20. S. B. Li, W. Q. Ding, Q. Z. Zhang, et al., “Experimental study of the mechanical properties of a new duplex stainless steel exposed to elevated temperatures,” Case Stud Constr. Mater, 17, e01683 (2022).

    Google Scholar 

  21. A. Zergani, H. Mirzadeh, and R. Mahmudi, “Unraveling the effect of deformation temperature on the mechanical behavior and transformation‐induced plasticity of the SUS304L stainless steel,” Steel Res Int., 91, No. 9, 2000114 (2020).

  22. T. Byun, N. Hashimoto, and K. Farrell, “Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels,” Acta Mater, 52, No. 13, 3889–3899 (2004).

    Article  ADS  CAS  Google Scholar 

  23. P. Janssen, T. Keijser, and M. Geers, “An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness,” Mater Sci Eng A, 419, Nos. 1–2, 238–248 (2006).

    Article  Google Scholar 

  24. C. H. Chen, R. S. Lee, and J. T. Gau, “Size effect and forming-limit strain prediction for microscale sheet metal forming of stainless steel 304,” J Strain Anal Eng, 45, No. 4, 283–299 (2010).

    Article  Google Scholar 

  25. K. Wang, Y. Song, P. La, et al., “Effect of rolling deformation on nanograins and mechanical properties of exceptional nano/microcrystalline ASS-304,” Steel Res Int, 89, No. 5, 1700490 (2018).

  26. J. Kacher and I. M. Robertson, “Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in ASS-304,” Acta Mater, 60, No. 19, 6657–6672 (2012).

    Article  ADS  CAS  Google Scholar 

  27. C. Keller and E. Hug, “Hall–Petch behaviour of Ni polycrystals with a few grains per thickness,” Mater Lett, 62, Nos. 10–11, 1718–1720 (2008).

    Article  CAS  Google Scholar 

  28. C. Keller, E. Hug, and X. Feaugas, “Microstructural size effects on mechanical properties of high purity nickel,” Int J Plasticity, 27, No. 4, 635–654 (2011).

    Article  CAS  Google Scholar 

  29. M. Lederer, V. Groeger, and G. Khatibi, “Size dependency of mechanical properties of high purity aluminium foils,” Mater Sci Eng A, 527, No. 3, 590–599 (2010).

    Article  Google Scholar 

  30. C. S. Zheng and W. W. Yu, “Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel,” Mater Sci Eng A, 710, 359–365 (2018).

    Article  CAS  Google Scholar 

  31. H. M. Ding, Y. Z. Wu, Q. J. Lu, et al., “A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures,” Cryogenics, 101, 89–100 (2019).

    Article  ADS  CAS  Google Scholar 

  32. B. L. Ennis, E. Jimenez-Melero, E. H. Atzema, et al., “Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel,” Int J Plasticity, 88, 126–139 (2017).

    Article  CAS  Google Scholar 

  33. Q. Q. Lai, Z. H. Q. Yang, Y. T. Wei, et al., “Transformation plasticity in high strength, ductile ultrafine-grained FeMn alloy processed by heavy ausforming,” Int J Plasticity, 148, 103151 (2022).

    Article  CAS  Google Scholar 

  34. P. Fernández-Pisón, J. A. Rodríguez-Martínez, E. García-Tabarés, et al., “Flow and fracture of austenitic stainless steels at cryogenic temperatures,” Eng Fract Mech, 258, 108042 (2021).

    Article  Google Scholar 

  35. M. J. Sohrabi, H. Mirzadeh, S. Sadeghpour, et al., “Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel,” Int J Plasticity, 160, 103502 (2023).

    Article  CAS  Google Scholar 

  36. G. Cios, T. Tokarski, A. Zywczak, et al., “The investigation of strain-induced martensite reverse transformation in AISI 304 austenitic stainless steel,” Metall Mater Trans A, 48, No. 10, 4999–5008 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Anhui University Science Research Projects (2022AH051630, KJ2021A0862, KJ2021A0877 and KJ2021ZD0111), Anhui Market Bureau Science and Technology Plan Project (2021MK034) and Bengbu Technology Plan Project (2022hm06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu.

Additional information

Translated from Problemy Mitsnosti, No. 6, p. 126, November – December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, R.B., Ge, Y.B., Yu, M. et al. Size Effect on Tensile Properties of Cold-Rolled ASS-304 Sheets at Various Service Temperatures. Strength Mater (2024). https://doi.org/10.1007/s11223-024-00615-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11223-024-00615-x

Keywords

Navigation