Skip to main content
Log in

Effect of Higher-Order Terms in the Thermal Transient Stress Intensity Factor for a Cracked Semi-Infinite Medium Under Thermal Shock

  • Published:
Strength of Materials Aims and scope

This paper studies the transient thermal fracture problem of a semi-infinite medium containing an edge crack using the non-Fourier heat conduction theory. Dual-phase-lag (DPL) model, which takes into account the effect of higher-order terms, (named x-DPL model) is proposed to predict the temperature gradient of the medium, which experiences a heat shock on its edge. The temperature gradient and the corresponding thermal stresses are obtained by applying the Laplace transform method and neglecting the thermo-elastic coupling and inertial effects in the absence of crack for the semi-infinite medium. Thereafter, mode I crack problem is formulated in the Laplace domain using the superposition method. Numerical results of the thermal stress and mode I stress intensity factor (SIF) are calculated by implementing Durbin’s method in the time domain. The effects of higher-order terms on the axial thermal stress and the mode I SIF are investigated and discussed. The DPL model that considers higher-order terms is more conservative than this model neglecting these terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. P. Krasnyuk, “Thermoelastic contact problem for a layer interacting with a rigid substrate under transient frictional heat generation conditions,” Strength Mater., 40, No. 3, 381–395 (2008), https://doi.org/https://doi.org/10.1007/s11223-008-9024-0.

  2. P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” Compt. Rendu, 246, 3154–3155 (1958).

    Google Scholar 

  3. D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Tran., 38, No. 17, 3231–3240 (1995).

    Article  CAS  Google Scholar 

  4. K. Daneshjou, M. Bakhtiari, H. Parsania, and M. Fakoor, “Non-Fourier heat conduction analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat source,” Appl. Therm. Eng., 98, 582–590 (2016).

    Article  Google Scholar 

  5. K. Daneshjou, M. Bakhtiari, R. Alibakhshi, and M. Fakoor, “Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source,” Int. J. Heat Mass Tran., 89, 977–984 (2015).

    Article  Google Scholar 

  6. M. Bakhtiari, K. Daneshjou, H. Parsania, and M. Fakoor, “Hyperbolic heat conduction analysis for an orthotropic FG hollow sphere with internal heat source. Application of a new augmented state space method,” Heat Transf. Res., 48, No. 15, 1399–1419 (2017).

    Article  Google Scholar 

  7. A. S. Semenov and L. B. Getsov, “Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters,” Strength Mater., 46, No. 1, 38–48 (2014), https://doi.org/https://doi.org/10.1007/s11223-014-9513-2.

  8. V. D. Poznyakov, L. I. Markashova, V. D. Shelyagin, et al., “Cold cracking resistance of butt joints in high-strength steels with different welding techniques,” Strength Mater., 51, No. 6, 843–851 (2019), https://doi.org/https://doi.org/10.1007/s11223-020-00132-7.

  9. V. M. Finkel’ and N. I. Alyushina, “Mechanisms of crack initiation and fracture of the surface of crystals of lithium fluoride and calcite in pulsed thermal loading,” Strength Mater., 17, No. 3, 355–360 (1985), https://doi.org/https://doi.org/10.1007/BF01755921.

  10. G. N. Tret’yachenko and B. S. Karpinos, “Mechanical and thermophysical characteristics of materials in fracture,” Strength Mater., 21, No. 9, 1146–1152 (1989), https://doi.org/https://doi.org/10.1007/BF01529287.

  11. H. Nied and F. Erdogan, “Transient thermal stress problem for a circumferentially cracked hollow cylinder,” J. Therm. Stresses, 6, No. 1, 1–14 (1983).

    Article  Google Scholar 

  12. K. Jayadevan, “Critical stress intensity factors for cracked hollow pipes under transient thermal loads,” J. Therm. Stresses, 25, No. 10, 951–968 (2002).

    Article  Google Scholar 

  13. R. Ghajar and S. Nabavi, “Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder,” Fatigue Fract. Eng. Mater. Struct., 33, No. 8, 504–512 (2010).

    Article  Google Scholar 

  14. H. Nied, “Thermal shock in an edge-cracked plate subjected to uniform surface heating,” Eng. Fract. Mech., 26, No. 2, 239–246 (1987).

    Article  Google Scholar 

  15. S. L. Guo, B. L. Wang, and J. E. Li, “Surface thermal shock fracture and thermal crack growth behavior of thin plates based on dual-phase-lag heat conduction,” Theor. Appl. Fract. Mech., 96, 105–113 (2018).

    Article  Google Scholar 

  16. N. Naotake and A. Fumihiro, “Thermal shock in a transversely isotropic cylinder containing an annular crack,” Int. J. Solids Struct., 30, No. 3, 427–440 (1993).

    Article  Google Scholar 

  17. D. M. Chang, X. F. Liu, B. L. Wang, et al., “Non-Fourier thermal shock fracture of solids with shallow semi-elliptical surface crack,” Theor. Appl. Fract. Mech., 96, 160–167 (2018).

    Article  Google Scholar 

  18. N. Noda and F. Ashida, “Stress intensity factor for transient thermal stresses in a transversely isotropic infinite body with an external circular crack,” Acta Mech., 66, No. 1, 217–231 (1987).

    Article  Google Scholar 

  19. L. M. Chen, J. W. Fu, and L. F. Qian, “On the non-Fourier thermal fracture of an edge-cracked cylindrical bar,” Theor. Appl. Fract. Mech., 80, 218–225 (2015).

    Article  Google Scholar 

  20. H. Jia and Y. Nie, “Thermoelastic analysis of multiple defects with the extended finite element method,” Acta Mech. Sin., 32, No. 6, 1123–1137 (2016).

    Article  Google Scholar 

  21. N. Soltani, M. Alembagheri, and M. H. Khaneghahi, “Risk-based probabilistic thermal-stress analysis of concrete arch dams,” Front. Struct. Civ. Eng., 13, No. 5, 1007–1019 (2019).

    Article  Google Scholar 

  22. J. Fu, Z. Chen, L. Qian, and Y. Xu, “Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack,” Eng. Fract. Mech., 128, 103–120 (2014).

    Article  Google Scholar 

  23. J. Fu, Z. Chen, L. Qian, and K. Hu, “Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C–V heat conduction model,” J. Therm. Stresses, 37, No. 11, 1324–1345 (2014).

    Article  Google Scholar 

  24. D. Y. Tzou, “Three dimensional structures of the thermal shock waves around a rapidly moving heat source,” Int. J. Eng. Sci., 28, No. 10, 1003–1017 (1990).

    Article  Google Scholar 

  25. J. J. Mason and A. J. Rosakis, “On the dependence of the dynamic crack tip temperature fields in metals upon crack tip velocity and material parameters,” Mech. Mater., 16, No. 4, 337–350 (1993).

    Article  Google Scholar 

  26. J. J. Mason and A. J. Rosakis, “The effects of hyperbolic heat conduction around a dynamically propagating crack tip,” Mech. Mater., 15, No. 4, 263–278 (1993).

    Article  Google Scholar 

  27. A. Amani Dashlejeh, “Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock,” Front. Struct. Civ. Eng., 13, No. 2, 397–405 (2019).

    Article  Google Scholar 

  28. D. Chang and B. Wang, “Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction,” Eng. Fract. Mech., 94, 29–36 (2012).

    Article  Google Scholar 

  29. B. Wang and J. Han, “Fracture mechanics associated with non-classical heat conduction in thermoelastic media,” Sci. China Phys. Mech. Astron., 55, No. 3, 493–504 (2012).

    Article  Google Scholar 

  30. B. L. Wang, “Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system,” Acta Mech. Sin., 29, No. 2, 211–218 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fakoor.

Additional information

Translated from Problemy Mitsnosti, No. 3, p. 118, May – June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakoor, M., Sotoudeh, S. Effect of Higher-Order Terms in the Thermal Transient Stress Intensity Factor for a Cracked Semi-Infinite Medium Under Thermal Shock. Strength Mater 54, 525–535 (2022). https://doi.org/10.1007/s11223-022-00427-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-022-00427-x

Keywords

Navigation