Skip to main content
Log in

Fracture Resistance of Brittle Materials Under Local Loading by Scratching to Edge Chipping. Part. 1. Methodical Grounds of Research

  • Published:
Strength of Materials Aims and scope

Methodical aspects of experimental investigation of brittle materials under local edge loading by scratching the specimen surface with a Rockwell indenter to its edge chipping (S+EF method) are detailed. The edge damage parameter range (fracture distance) had its basis in the literature data on numerical simulation of the stress-strain state in the local indentation zone of the material surface to its edge chipping. Fractographic analysis of tested edges revealed their damage behavior under given loading conditions. The paths of fracture crack propagation to the formation of “shell-like” chip scars, which are asymmetric quasi-conical crack traces, are studied. Partially formed or strained chips having a somewhat distorted fracture surface as compared to the “ideal” geometry of the edge chip were also found. The asymmetry of chip scars was established to have no effect on the fracture resistance of the material. The validity of empirical investigation results was achieved with a minimum test scope, determined by statistical data processing. This test method of low material intensity can be effectively applied to different lines of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. A. Gogotsi, V. I. Galenko, S. P. Mudrik, et al., “Glass fracture in edge flaking,” Strength Mater., 39, No. 6, 639–645 (2007).

    Article  CAS  Google Scholar 

  2. V. V. Khvorostyanyi, “Mechanical behavior of ceramics and glass during specimen edge fracture caused by Rockwell indentor,” Strength Mater., 46, No. 3, 383–390 (2014).

    Article  Google Scholar 

  3. CEN/TS 834-9. Advanced Technical Ceramics – Mechanical Properties of Monolithic Ceramics at Room Temperature – Part 9: Method of Test for Edge-Chip Resistance, CEN (2010).

  4. B. A. Lattella, “Scratch damage in porous alumina ceramics,” J. Mater. Sci. Lett., 19, 1127–1130 (2000).

    Article  Google Scholar 

  5. J. A. Williams, “Analytical models of scratch hardness,” Tribol. Int., 29, 675–694 (1996).

    Article  CAS  Google Scholar 

  6. L. A. Flanders, J. B. Quinn, O. C. Wilson, Jr., and J. K. Lloyd, “Scratch hardness and chipping of dental ceramics under different environments,” Dental Mater., 19, 716–724 (2003).

    Article  CAS  Google Scholar 

  7. G. A. Gogotsi, “Fracture behavior of Mg-PSZ ceramics: Comparative estimates,” Ceram. Int., 35, 2735–2740 (2009).

    Article  CAS  Google Scholar 

  8. V. G. Baryakhtar, Physics of Solids Encyclopaedic Dictionary [in Russian], in 2 volumes, Naukova Dumka, Kiev (1996).

  9. G. A. Gogotsi, V. I. Galenko, S. P. Mudrik, et al. “Fracture behaviour of Y-TZP ceramics: New outcomes,” Ceram. Int., 36, 345–350 (2010).

    Article  CAS  Google Scholar 

  10. G. A. Gogotsi, V. I. Galenko, S. P. Mudrik, et al., “Fracture resistance estimation of elastic ceramics in edge flaking: EF baseline,” J. Eur. Ceram. Soc., 30, 1223–1228 (2010).

    Article  CAS  Google Scholar 

  11. E. A. Almond and N. J. McCormick, “Constant-geometry edge flaking of brittle materials,” Nature, 321, 53–55 (1986).

    Article  Google Scholar 

  12. R. Morrell and A. J. Gant, “Edge chipping of hard materials,” Int. J. Refract. Met. H., 19, 293–301 (2001).

    Article  CAS  Google Scholar 

  13. N. J. McCormick and E. A. Almond, “Edge flaking of brittle materials,” J. Hard Mater., 1, 25–51 (1990).

    CAS  Google Scholar 

  14. A. Mohajerani and J. K. Spelt, “Edge chipping of borosilicate glass by blunt indentation,” Mech. Mater., 42, 1064–1080 (2010).

    Article  Google Scholar 

  15. G. A. Gogotsi and S. P. Mudrik, “Glasses: New approach to fracture behavior analysis,” J. Non-Cryst. Solids, 356, 1021–1026 (2010).

    Article  CAS  Google Scholar 

  16. H. Chai and B. Lawn, “A universal relation for edge chipping from sharp contacts in brittle materials: A simple means of toughness evaluation,” Acta Mater., 55, 2555–2561 (2007).

    Article  CAS  Google Scholar 

  17. F. Petit, V. Vandeneede, and F. Cambier, “Ceramic toughness assessment through edge chipping measurements – Influence of interfacial friction,” J. Eur. Ceram. Soc., 29, 2135–2141 (2009).

    Article  CAS  Google Scholar 

  18. G. D. Quinn, “Edge chip testing of ceramics,” J. Am. Ceram. Soc. Bull., 92, 24–28 (2013).

    CAS  Google Scholar 

  19. O. A. Batanova, G. A. Gogotsi, and Yu. G. Matvienko, “Numerical modeling edge chipping tests of ceramics,” Eng. Fract. Mech., 132, 38–46 (2014).

    Article  Google Scholar 

  20. O. A. Batanova, G. A. Gogotsi, and Yu. G. Matvienko, “Numerical analysis of experimental results for specimen edge chipping,” Zavod Lab. Diagn. Mater., No. 7, 53–56 (2011).

    Google Scholar 

  21. M. N. Stepnov, Statistical Processing Methods for Mechanical Test Results. Handbook [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khvorostyanyi.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 65 – 73, September – October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvorostyanyi, V.V. Fracture Resistance of Brittle Materials Under Local Loading by Scratching to Edge Chipping. Part. 1. Methodical Grounds of Research. Strength Mater 52, 746–752 (2020). https://doi.org/10.1007/s11223-020-00228-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00228-0

Keywords

Navigation