Skip to main content
Log in

Bayesian Estimation of Constant-Stress Life Test Model Using Type-I Censored Data from the Linear Failure Rate Distribution

  • Published:
Strength of Materials Aims and scope

This paper considers both likelihood and Bayesian estimations of a constant-stress partially accelerated life test model with type-I censored data from the linear failure rate distribution. The maximum likelihood estimates of the model parameters are obtained using Newton–Raphson technique. The posterior means and posterior variances are obtained under the squared error loss function using Lindley’s approximation procedure. The advantages of this approximation are exposed. Monte Carlo simulations are prepared under different sizes of samples and different parameter values for comparing and evaluating the proposed methods of estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Q. Fu and Y. Shi, “Constant-partially accelerated life tests for Marshall–Olkin exponential series system with dependent masked data,” Commun. Stat.-Simul. C., 46, No. 10, 7879–7893 (2017).

    Article  Google Scholar 

  2. A. A. Ismail and A. A. Al-Babtain, “Planning failure-censored constant-stress partially accelerated life test,” J. Syst. Eng. Electron., 26, No. 3, 644–650 (2015).

    Article  Google Scholar 

  3. Ali A. Ismail, “Estimating the generalized exponential distribution parameters and the acceleration factor under constant stress partially accelerated life testing with type-II censoring,” Strength Mater., 45, No. 6, 693–702 (2013).

    Article  Google Scholar 

  4. Ali A. Ismail, “On designing constant-stress partially accelerated life tests under time-censoring,” Strength Mater., 46, No. 1, 132–139 (2014).

    Article  Google Scholar 

  5. Ali A. Ismail, “Bayesian estimation under constant-stress partially accelerated life test for Pareto distribution with type-I censoring,” Strength Mater., 47, No. 4, 633–641 (2015).

    Article  Google Scholar 

  6. Ali A. Ismail and A. Al Tamimi, “Optimum constant-stress partially accelerated life test plans using type-I censored data from the inverse Weibull distribution,” Strength Mater., 49, No. 6, 847–855 (2017).

    Article  Google Scholar 

  7. Ali A. Ismail and A. Al Tamimi, “Optimal design of failure-censored constant-stress life test plans for the inverse Weibull distribution,” Strength Mater., 51, No. 1, 156–165 (2019).

    Article  Google Scholar 

  8. Ali A. Ismail, “Planning step-stress life tests for the generalized Rayleigh distribution under progressive type-II censoring with binomial removals,” Strength Mater., 49, No. 2, 292–306 (2017).

    Article  Google Scholar 

  9. Ali A. Ismail and K. Al-Habardi, “On designing time-censored step-stress life test for the Burr type-XII distribution,” Strength Mater., 49, No. 5, 699–709 (2017).

    Article  Google Scholar 

  10. W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley & Sons, New York (1990).

  11. S. Broadbent, “Simple mortality rates,” J. R. Stat. Soc. C-Appl., 7, 86–95 (1958).

    Google Scholar 

  12. P. O. Carbone, L. E. Kellerhouse, and E. A. Gehan, “Plasmacytic myeloma: a study of the relationship of survival to various clinical manifestations and anomalous protein type in 112 patients,” Am. J. Med., 42, 937–948 (1967).

    Article  CAS  Google Scholar 

  13. D. Kodlin, “A new response time distribution,” Biometrics, 2, 227–239 (1967).

    Article  Google Scholar 

  14. D. V. Lindley, “Approximate Bayesian methods,” Trabajos de Estadistica, 31, 223–245 (1980).

    Article  Google Scholar 

  15. J. Green, “Discussant on D. V. Lindley’s (1980) paper on approximate Bayesian methods,” Trabajos de Estadistica, 31, 241–243 (1980).

    Google Scholar 

  16. S. K. Sinha, Reliability and Life Testing, Wiley Eastern/Halstead, New York (1986). 180

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ismail.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 192 – 202, January – February, 2020.

Appendix

Appendix

The derivation of posterior means and posterior variances: here, there are three parameters in the model. That is, m = 3. Let the subscripts 1, 2, and 3 refer to β, α, and θ, respectively. It is not easy to obtain the posterior moments analytically. Therefore, using Lindley expansion, the posterior mean (i.e., Bayesian estimator under squared-error loss function) and the posterior variance of β are given, respectively, in the form:

$$ {\upbeta}^{\ast }=E\left(\left.\upbeta \right| data\right)\left[\upbeta -\left(\frac{\upsigma_{11}}{\upbeta}+\frac{\upsigma_{12}}{\uptheta}+\frac{\upsigma_{13}}{\upalpha}\right)+\frac{1}{2}\left({\upsigma}_{11}{E}_1+{\upsigma}_{12}{E}_2+{\upsigma}_{13}{E}_3\right)\right]\downarrow \Theta $$
(4)

and

$$ \operatorname{var}\left(\left.\upbeta \right| data\right)=E\left(\left.{\upbeta}^2\right|y\right)-{\left({\upbeta}^{\ast}\right)}^2={\upsigma}_{11}-{\left[\left(\frac{\upsigma_{11}}{\upbeta}+\frac{\upsigma_{12}}{\uptheta}+\frac{\upsigma_{13}}{\upalpha}\right)-\frac{1}{2}\left({\upsigma}_{11}{E}_1+{\upsigma}_{12}{E}_2+{\upsigma}_{13}{E}_3\right)\right]}^2\downarrow \Theta . $$
(5)

Similarly, for the shape parameter α, the posterior mean and the posterior variance are given by

$$ {\upalpha}^{\ast }=E\left(\left.\upalpha \right| data\right)\left[\upalpha -\left(\frac{\upsigma_{31}}{\upbeta}+\frac{\upsigma_{32}}{\uptheta}+\frac{\upsigma_{33}}{\upalpha}\right)+\frac{1}{2}\left({\upsigma}_{31}{E}_1+{\upsigma}_{32}{E}_2+{\upsigma}_{33}{E}_3\right)\right]\downarrow \Theta, $$
(6)
$$ \operatorname{var}\left(\left.\upalpha \right| data\right)={\upsigma}_{33}-{\left[\left(\frac{\upsigma_{31}}{\upbeta}+\frac{\upsigma_{32}}{\uptheta}+\frac{\upsigma_{33}}{\upalpha}\right)-\frac{1}{2}\left({\upsigma}_{31}{E}_1+{\upsigma}_{32}{E}_2+{\upsigma}_{33}{E}_3\right)\right]}^2\downarrow \Theta . $$
(7)

Applying the same technique, the posterior mean and posterior variance of the scale parameter θ take the following form:

$$ {\uptheta}^{\ast }=E\left(\left.\uptheta \right| data\right)\left[\uptheta -\left(\frac{\upsigma_{21}}{\upbeta}+\frac{\upsigma_{22}}{\uptheta}+\frac{\upsigma_{23}}{\upalpha}\right)+\frac{1}{2}\left({\upsigma}_{21}{E}_1+{\upsigma}_{22}{E}_2+{\upsigma}_{23}{E}_3\right)\right]\downarrow \Theta $$
(8)

and

$$ \operatorname{var}\left(\left.\uptheta \right| data\right)={\upsigma}_{22}-{\left[\left(\frac{\upsigma_{21}}{\upbeta}+\frac{\upsigma_{22}}{\uptheta}+\frac{\upsigma_{23}}{\upalpha}\right)-\frac{1}{2}\left({\upsigma}_{21}{E}_1+{\upsigma}_{22}{E}_2+{\upsigma}_{23}{E}_3\right)\right]}^2\downarrow \Theta, $$
(9)

where

$$ {E}_1=\sum \limits_{i,j}{\upsigma}_{ij}{L}_{ij1}^{(3)},\kern1em {E}_2=\sum \limits_{i,j}{\upsigma}_{ij}{L}_{ij2}^{(3)},\kern1em {E}_3=\sum \limits_{i,j}{\upsigma}_{ij}{L}_{ij3}^{(3)}, $$

for i, j = 1, 2, 3, σij are the elements of the inverse of the asymptotic Fisher-information matrix of the ML estimators of β, θ, and α in the case of type-I censored data and i, j = 1, 2, 3, \( {L}_{ijk}^{(3)} \) is the third derivatives of the natural logarithm of the likelihood function in type-I censoring.

To compute the posterior means and the posterior variances of β, θ, and α derived before, both second and third derivatives of the natural logarithm of the likelihood function given in ((2) must be obtained.

The second derivatives can be given via the following equations:

$$ {\displaystyle \begin{array}{c}\frac{\partial^2\ln L}{\partial {\upalpha}^2}=-\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left[\frac{1}{{\left(\upalpha +\uptheta {t}_i\right)}^2}\right]-{\upbeta}^2\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{1}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}\right],\\ {}\frac{\partial^2\ln L}{\mathrm{\partial \upalpha \partial \uptheta }}=\frac{\partial^2\ln L}{\mathrm{\partial \uptheta \partial \upalpha }}=-\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left[\frac{t_i}{{\left(\upalpha +\uptheta {t}_i\right)}^2}\right]-{\upbeta}^3\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{x_j}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}\right],\\ {}\frac{\partial^2\ln L}{\mathrm{\partial \upalpha \partial \upbeta }}=\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial \upalpha }}=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{-\left({\uptheta \upbeta}^2{x}_j\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}-{x}_j\right]+\upeta \left({n}_a-n\uppi \right),\\ {}\frac{\partial^2\ln L}{\partial {\uptheta}^2}=-\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left[\frac{t_i^2}{{\left(\upalpha +\uptheta {t}_i\right)}^2}\right]-{\upbeta}^4\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{x_j^2}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}\right],\\ {}\frac{\partial^2\ln L}{\mathrm{\partial \uptheta \partial \upbeta }}=\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial \uptheta }}=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{\left({\upalpha \upbeta}^2{x}_j\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}-\upbeta {x}_j^2\right]+{\upbeta \upeta}^2\left({n}_a-n\uppi \right),\\ {}\frac{\partial^2\ln L}{\partial {\upbeta}^2}=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left[\frac{-\left({\upalpha}^2+2\upalpha \uptheta \upbeta {x}_j+2{\left(\uptheta \upbeta {x}_j\right)}^2\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^2}-\uptheta {x}_j^2\right]+{\uptheta \upeta}^2\left({n}_a-n\uppi \right).\end{array}} $$

Third derivatives are calculated as follows:

$$ {\displaystyle \begin{array}{c}{L}_{111}^{(3)}=\frac{\partial^3\ln L}{\partial {\upbeta}^3}=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2\left({\upalpha}^2+2\upalpha \uptheta \upbeta {x}_j+2{\uptheta}^2{\upbeta}^2{x}_j^2\right)\left(\upalpha +2\uptheta \upbeta {x}_j\right)-\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)\left(2\upalpha \uptheta {x}_j+4{\uptheta}^2\upbeta {x}_j^2\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{222}^{(3)}=\frac{\partial^3\ln L}{\partial {\upalpha}^3}=\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left(\frac{2}{{\left(\upalpha +\uptheta {t}_i\right)}^3}\right)+\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2{\left(\upbeta \right)}^3}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{333}^{(3)}=\frac{\partial^3\ln L}{\partial {\uptheta}^3}=\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left(\frac{2{t}_i^3}{{\left(\upalpha +\uptheta {t}_i\right)}^3}\right)+\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{(2){\left({\upbeta}^2{x}_j\right)}^3}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{112}^{(3)}={L}_{211}^{(3)}={L}_{121}^{(3)}=\frac{\partial^3\ln L}{\partial {\upbeta}^2\mathrm{\partial \upalpha }}=\frac{\partial }{\mathrm{\partial \upbeta }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial \upalpha }}\right)=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2\left({\uptheta}^2{\upbeta}^3{x}_j^2\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{113}^{(3)}={L}_{311}^{(3)}={L}_{131}^{(3)}=\frac{\partial^3\ln L}{\partial {\upbeta}^2\mathrm{\partial \uptheta }}=\frac{\partial }{\mathrm{\partial \upbeta }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial \uptheta }}\right)=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{-2\left({\upalpha \uptheta \upbeta}^3{x}_j^2\right)}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}-{x}_j^2\right)+{\upeta}^2\left({n}_a-n\uppi \right),\\ {}{L}_{221}^{(3)}={L}_{122}^{(3)}={L}_{212}^{(3)}=\frac{\partial^3\ln L}{\partial {\upalpha}^2\mathrm{\partial \upbeta }}=\frac{\partial }{\mathrm{\partial \upalpha }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \upalpha \partial \upbeta }}\right)=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2{\uptheta \upbeta}^3{x}_j}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{331}^{(3)}={L}_{133}^{(3)}={L}_{313}^{(3)}=\frac{\partial^3\ln L}{\partial {\uptheta}^2\mathrm{\partial \upbeta }}=\frac{\partial }{\mathrm{\partial \uptheta }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \uptheta \partial \upbeta }}\right)=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{-2{\upalpha \upbeta}^4{x}_j^2}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{223}^{(3)}={L}_{322}^{(3)}={L}_{232}^{(3)}=\frac{\partial^3\ln L}{\partial {\upalpha}^2\mathrm{\partial \uptheta }}=\frac{\partial }{\mathrm{\partial \upalpha }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \upalpha \partial \uptheta }}\right)=\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left(\frac{2{t}_i}{{\left(\upalpha +\uptheta {t}_i\right)}^3}\right)+\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2{\upbeta}^4{x}_j}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{332}^{(3)}={L}_{233}^{(3)}={L}_{323}^{(3)}=\frac{\partial^3\ln L}{\partial {\uptheta}^2\mathrm{\partial \upalpha }}=\frac{\partial }{\mathrm{\partial \uptheta }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \uptheta \partial \upalpha }}\right)=\sum \limits_{i=1}^{n\left(1-\uppi \right)}{\updelta}_{u_i}\left(\frac{2{t}_i^2}{{\left(\upalpha +\uptheta {t}_i\right)}^3}\right)+\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{2{\upbeta}^5{x}_j^2}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right),\\ {}{L}_{123}^{(3)}={L}_{321}^{(3)}={L}_{231}^{(3)}={L}_{312}^{(3)}={L}_{213}^{(3)}={L}_{132}^{(3)}=\frac{\partial^3\ln L}{\mathrm{\partial \upalpha \partial \uptheta \partial \upbeta }}=\frac{\partial }{\mathrm{\partial \upbeta }}\left(\frac{\partial^2\ln L}{\mathrm{\partial \upalpha \partial \uptheta }}\right)=\sum \limits_{j=1}^{n\uppi}{\updelta}_{a_j}\left(\frac{{\uptheta \upbeta}^4{x}_j^2-{\upalpha \upbeta}^3{x}_j}{{\left(\upalpha \upbeta +{\uptheta \upbeta}^2{x}_j\right)}^3}\right).\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A.A., Al-Harbi, M.M. Bayesian Estimation of Constant-Stress Life Test Model Using Type-I Censored Data from the Linear Failure Rate Distribution. Strength Mater 52, 171–180 (2020). https://doi.org/10.1007/s11223-020-00162-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00162-1

Keywords

Navigation