Advertisement

Strength of Materials

, Volume 49, Issue 6, pp 872–896 | Cite as

Simulation of the Spindle Coupled Multi-Axial Loading Fatigue Test of a Minivan Rear Axle

  • Z. DongEmail author
  • X. Wang
  • W. Lou
  • Y. Huang
  • M. Zhong
  • H. Fan
  • L. Peng
Article

This study aims to establish a practical method for simulating the spindle coupled multi-axial loading fatigue test of a rear axle. A dynamic finite element model of the minivan rear axle was constructed and validated using a static calibration test. Based on the theory and methodology of the Schenck ITFC system, a simulation process was devised which includes system identification, calculation of the input loading signals for the finite element model, calculation of the response stress signals based on this model, calculation of the response strain signals from the corresponding stress signals, and finally, a comparison of the desired and achieved signals. The corresponding data processing programs were made using MATLAB, ensuring their easy reproducibility. The desired signals were measured on the Hainan proving ground for a duration of 2441.216 s, using strain gauges and rosettes placed in important stress-prone locations of the rear axle. The results indicate that the desired signals can be reproduced quite accurately, ensuring that the strain distribution of the rear axle in the field can be reasonably predicted.

Keywords

spindle coupled multi-axis loading rear axle finite element analysis frequency response function strain history reproduction 

References

  1. 1.
    G. Jacoby, “Betriebslasten Simulation an Fahrzeugbauteilen Mittels servohydraulischer Prüfeinrichtungen,” VDI Berichte, 632, 1–54 (1987).Google Scholar
  2. 2.
    K. J. White, “The road simulator – a practical laboratory approach,” in: Prediction and Simulation of In-Service Conditions, IMechE Conference Publications 1985-5, Institute of Mechanical Engineers, London (1985), pp. 69–80.Google Scholar
  3. 3.
    K. Feitzelmayer and U. Breitling, “Development of commercial vehicle rear driven axles on multi-axis test set-ups,” in: Prediction and Simulation of In-Service Conditions, IMechE Conference Publications 1985-5, Institute of Mechanical Engineers, London (1985), pp. 131–138.Google Scholar
  4. 4.
    C. J. Dodds, A Computer System for Multi-Channel Remote Parameter Control of a Test Specimen, MTS publication (1977).Google Scholar
  5. 5.
    X. Wang, Fundamentals of Automotive Reliability Engineering [in Chinese], Tsinghua University Press, Beijing (2007).Google Scholar
  6. 6.
    Simulation Testing and SPiDAR-IDC, Fairhurst Structural Monitoring publication (1987).Google Scholar
  7. 7.
    J. De Cuyper, D. Coppens, C. Liefooghe, and J. Debille, “Advanced system identification methods for improvedservice load simulation on multi-axial test rigs,” Eur. J. Mech. Environ. Eng. M, 44, No. 1, 27–39 (1999).Google Scholar
  8. 8.
    J. De Cuyper and D. Coppens, “Service load simulation on multi-axis test rigs,” Sound Vib., 30, No. 1, 30–35 (1999).Google Scholar
  9. 9.
    S. You and S. Joo, Virtual Testing and Correlation with Spindle Coupled Full Vehicle Testing System, SAE Technical Paper 2006-01-0993 (2006).Google Scholar
  10. 10.
    R. E. Canfield and M. A. Villaire, The Development of Accelerated Component Durability Test Cycles Using Fatigue Sensitive Editing Techniques, SAE Technical Paper 920660 (1992).Google Scholar
  11. 11.
    K. J. Dittmann, F. J. Albright, and C. Leser, “Validation of virtual prototypes via a virtual test laboratory,” in: Proc. of the 17th European MSC.ADAMS User Conference (November 13–14, 2002, London, UK) (2002).Google Scholar
  12. 12.
    S. You, C. Leser, and E. Young, Tools for Integration of Analysis and Testing, SAE Technical Paper 2003-01-1606 (2003).Google Scholar
  13. 13.
    B. P. Naganarayana, S. Shankar, V. S. Bhattachar, et al., N-Hance; Software for Identification of Critical BSR Location in Automotive Assemblies Using Finite Element Models, SAE Technical Paper 2003-01-1522 (2003).Google Scholar
  14. 14.
    R. K. Hodkin, “Hydraulic vibrators in automobile testing with special reference to the rootes suspension parameter rig,” Proc. Inst. Mech. Eng., 182, No. 254–62 (1967).Google Scholar
  15. 15.
    S. S. You and D. Fricke, “Advances of virtual testing and hybrid simulation in automotive performance and durability evaluation,” SAE Int. J. Mater. Manuf., 4, No. 1, 98–110 (2011), DOI:  https://doi.org/10.4271/2011-01-0029.CrossRefGoogle Scholar
  16. 16.
    G. Choi, H. Min, and S. Paik, Dynamic Stress Analysis of Vehicle Using Virtual Proving Ground Approach, SAE Technical Paper 2000-01-0121 (2000).Google Scholar
  17. 17.
    R. Edara, S. Shih, N. Tamini, et al., Heavy Vehicle Suspension Frame Durability Analysis Using Virtual Proving Ground, SAE Technical Paper 2005-01-3609 (2005).Google Scholar
  18. 18.
    D. Kim and S. Joo, Generation of 3-D Virtual Block Belgian Road for Prediction of Road Load, SAE Technical Paper 2011-28-0077 (2011).Google Scholar
  19. 19.
    Y. Zhang, T. Stawiarski, M. Subramanian, et al., Full Vehicle Finite Element Model 4-Post Durability Analysis, SAE Technical Paper 2005-01-1402 (2005).Google Scholar
  20. 20.
    N. Dowling, A Discussion of Methods for Estimating Fatigue Life, SAE Technical Paper 820691 (1982).Google Scholar
  21. 21.
    H. S. Reemsnyder, Constant Amplitude Fatigue Life Assessment Models, SAE Technical Paper 820688 (1982).Google Scholar
  22. 22.
    D. Socie, Variable Amplitude Fatigue Life Estimation Models, SAE Technical Paper 820689 (1982).Google Scholar
  23. 23.
    B. Boardman, Crack Initiation Fatigue – Data, Analysis, Trends and Estimation, SAE Technical Paper 820682 (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Z. Dong
    • 1
    Email author
  • X. Wang
    • 1
  • W. Lou
    • 1
  • Y. Huang
    • 2
  • M. Zhong
    • 2
  • H. Fan
    • 2
  • L. Peng
    • 2
  1. 1.State Key Laboratory of Automotive Safety and Energy, Department of Automotive EngineeringTsinghua UniversityBeijingChina
  2. 2.SAIC GM Wuling Automobile Co., Ltd.LiuzhouChina

Personalised recommendations