Strength of Materials

, Volume 49, Issue 4, pp 575–585 | Cite as

Linear Micropolar Elasticity Analysis of Stresses in Bones Under Static Loads

Article
  • 64 Downloads

We discuss the finite element modeling of porous materials such as bones using the linear micropolar elasticity. In order to solve static boundary-value problems, we developed new finite elements, which capture the micropolar behavior of the material. Developed elements were implemented in the commercial software ABAQUS. The modeling of a femur bone with and without implant under various stages of healing is discussed in details.

Keywords

bone implant Cosserat continuum micropolar elasticity numerical simulation finite element method 

Notes

Acknowledgments

The research leading to these results has received funding from the People Program (Marie Curie Curie ITN transfer) of the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. PITN-GA-2013-606878.

References

  1. 1.
    S. Cowin (Ed.), Bone Mechanics Handbook, CRC Press LLC, Boca Raton (2001).Google Scholar
  2. 2.
    Y. H. An and R. A. Draughn (Eds.), Mechanical Testing of Bone and the Bone- Implant Interface, CRC Press LLC, Boca Raton (2000).Google Scholar
  3. 3.
    S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elasticity, 6, No. 3, 313–326 (1976).CrossRefGoogle Scholar
  4. 4.
    D. H. Hegedus and S. C. Cowin, “Bone remodeling II: small strain adaptive elasticity,” J. Elasticity, 6, No. 4, 337–352 (1976).CrossRefGoogle Scholar
  5. 5.
    R. S. Lakes and J. F. Yang, “Transient study of couple stress effects in compact bone: torsion,” J. Biomech. Eng., 103, 275–279 (1981).CrossRefGoogle Scholar
  6. 6.
    J. F. C. Yang and R. S. Lakes, “Experimental study of micropolar and couple stress elasticity in compact bone in bending,” J. Biomech., 15, No 2, 91–98 (1982).CrossRefGoogle Scholar
  7. 7.
    H. C. Park and R. S. Lakes, “Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent,” J. Biomech., 19, No. 5, 385–397 (1986).CrossRefGoogle Scholar
  8. 8.
    R. S. Lakes, “Experimental microelasticity of two porous solids,” Int. J. Solids Struct., 22, No. 1, 55–63 (1986).CrossRefGoogle Scholar
  9. 9.
    R. S. Lakes, “Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua,” J. Eng. Mater. Technol., 113, No. 1, 148–155 (1991).CrossRefGoogle Scholar
  10. 10.
    I. Goda, M. Assidi, S. Belouettar, and J. F. Ganghoffer, “A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization,” J. Mech. Behav. Biomed., 16, 87–108 (2012).CrossRefGoogle Scholar
  11. 11.
    I. Goda, M. Assidi, and J. F. Ganghoffer, “3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure,” Biomech. Model. Mechan., 13, No. 1, 53–83 (2014).CrossRefGoogle Scholar
  12. 12.
    I. Goda and J. F. Ganghoffer, “Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures,” J. Mech. Behav. Biomed., 51, 99–118 (2015).CrossRefGoogle Scholar
  13. 13.
    I. Goda, F. Dos Reis, and J. F. Ganghoffer, “Limit analysis of lattices based on the asymptotic homogenization method and prediction of size effects in bone plastic collapse,” in: H. Altenbach and S. Forest (Eds.), Generalized Continua as Models for Classical and Advanced Materials, Springer International Publishing (2016), pp. 179– 211.Google Scholar
  14. 14.
    I. Goda, R. Rahouadj, J. F. Ganghoffer, et al., “3D couple-stress moduli of porous polymeric biomaterials using μCT image stack and FE characterization,” Int. J. Eng. Sci., 100, 25–44 (2016).CrossRefGoogle Scholar
  15. 15.
    F. Dell’Isola F., D. Steigmann, and A. Della Corte, “Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response,” Appl. Mech. Rev., 67, No. 6, 060804–060804-21 (2016).Google Scholar
  16. 16.
    F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. Roy. Soc. A, 472, No. 2185 (2016), DOI:  https://doi.org/10.1098/rspa.2015.0790.
  17. 17.
    D. Scerrato, I. Giorgio, and N. L. Rizzi, “Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations,” Z. Angew. Math. Phys., 67, No. 3, Article No. 53 (2016).Google Scholar
  18. 18.
    F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. R. Soc. A, 472, No. 2185 (2016), DOI:  https://doi.org/10.1098/rspa.2015.0790.
  19. 19.
    E. Turco, F. Dell’Isola, A. Cazzani, and N. L. Rizzi, “Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models,” Z. Angew. Math. Phys., 67, No. 4, 1–28 (2016).CrossRefGoogle Scholar
  20. 20.
    M. Cuomo, F. Dell’Isola, L. Greco, and N. L. Rizzi, “First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities,” Compos. Part B - Eng., 115, 423–448 (2017).CrossRefGoogle Scholar
  21. 21.
    L. Placidi, L. Greco, S. Bucci, et al., “A second gradient formulation for a 2D fabric sheet with inextensible fibres,”Z. Angew. Math. Phys., 67, No. 5, 114 (2016), doi.org/ https://doi.org/10.1007/s00033-016-0701-8.
  22. 22.
    T. Lekszycki and F. Dell’Isola, “A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio- resorbable materials,” Z. Angew. Math. Mech., 92, No. 6, 426–444 (2012).CrossRefGoogle Scholar
  23. 23.
    I. Giorgio, U. Andreaus, D. Scerrato, and F. Dell’Isola, “A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials,” Biomech. Model. Mechan., 15, No. 5, 1325-1343 (2016).CrossRefGoogle Scholar
  24. 24.
    I. Giorgio, U. Andreaus, D. Scerrato, and P. Braidotti, “Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material,” Math. Mech. Solids (2016), DOI:  https://doi.org/10.1177/1081286516644867.
  25. 25.
    I. Giorgio, U. Andreaus, T. Lekszycki, and A. Della Corte, “The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bio-resorbable material mixture with voids,” Math. Mech. Solids (2015), DOI: https://doi.org/10.1177/ 1081286515616052.Google Scholar
  26. 26.
    G. Mishuris, “Models of an interaction between two elastic media one of which is weakened by a symmetrical angular cut,” Vestn. Leningrad Univ. Math., 62–66 (1985).Google Scholar
  27. 27.
    E. Radi, “Effects of characteristic material lengths on mode III crack propagation in couple stress elastic–plastic materials,” Int. J. Plasticity, 23, No. 8, 1439–1456 (2007).CrossRefGoogle Scholar
  28. 28.
    E. Radi, “On the effects of the characteristic lengths in bending and torsion on Mode III crack in couple stress elasticity,” Int. J. Solids Struct., 45, No. 10, 3033–3058 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Piccolroaz, G. Mishuris, and E. Radi, “Mode III interfacial crack in the presence of couple-stress elastic materials,” Eng. Fract. Mech., 80, 60–71 (2012).CrossRefGoogle Scholar
  30. 30.
    G. Mishuris, A. Piccolroaz, and E. Radi, “Steady-state propagation of a Mode III crack in couple stress elastic materials,” Int. J. Eng. Sci., 61, 112–128 (2012).CrossRefGoogle Scholar
  31. 31.
    L. Morini, A. Piccolroaz, G. Mishuris, and E. Radi, “On fracture criteria for dynamic crack propagation in elastic materials with couple stresses,” Int. J. Eng. Sci., 71, 45–61 (2013).CrossRefGoogle Scholar
  32. 32.
    L. Morini, A. Piccolroaz, and G. Mishuris, “Dynamic energy release rate in couple- stress elasticity,” J. Phys. Conf. Ser., 451, No. 1, 012014 (2013).Google Scholar
  33. 33.
    L. Morini, A. Piccolroaz, and G. Mishuris, “Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity,” Int. J. Solids Struct., 51, No. 18, 3087–3100 (2014).CrossRefGoogle Scholar
  34. 34.
    V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On finite element computations of contact problems in micropolar elasticity,” Adv. Mater. Sci. Eng., Article ID 9675604, 1–9 (2016).Google Scholar
  35. 35.
    V. A. Eremeyev, A. Skrzat, and A. Vinakurava, “Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction,” Strength Mater., 48, No. 4, 573–582 (2016).CrossRefGoogle Scholar
  36. 36.
    V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On FEM evaluation of stress concentration in micropolar elastic materials,” Nanomech. Sci. Technol., 7, No. 4, 297–304 (2016).Google Scholar
  37. 37.
    E. Cosserat and F. Cosserat, Théorie des Corps Déformables, Herman et Fils, Paris (1909).Google Scholar
  38. 38.
    A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Science&Business Media, New York (1999).CrossRefGoogle Scholar
  39. 39.
    V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer Science&Business Media, Berlin (2013).CrossRefGoogle Scholar
  40. 40.
    W. Pietraszkiewicz and V. A. W Eremeyev, “On natural strain measures of the non-linear micropolar continuum,” Int. J. Solids Struct., 46, No. 3, 774–787 (2009).CrossRefGoogle Scholar
  41. 41.
    W. Pietraszkiewicz and V. A. Eremeyev, “On vectorially parameterized natural strain measures of the non-linear Cosserat continuum,” Int. J. Solids Struct., 46, No. 11, 2477–2480 (2009).CrossRefGoogle Scholar
  42. 42.
    V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group of the non-linear polar-elastic continuum,” Int. J. Solids Struct., 49, No. 14, 1993–2005 (2012).CrossRefGoogle Scholar
  43. 43.
    V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group and constitutive equations of micropolar anisotropic elastic solids,” Math. Mech. Solids, 21, No. 2, 210–221 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Gdansk University of TechnologyGdanskPoland
  2. 2.Rzeszów University of TechnologyRzeszówPoland

Personalised recommendations