Advertisement

Strength of Materials

, Volume 49, Issue 3, pp 479–486 | Cite as

High-Strength Spodumene Glass-Ceramic Materials

  • O. V. Savvova
  • O. V. Babich
  • G. K. Voronov
  • S. O. Ryabinin
Article
  • 57 Downloads

The paper demonstrates the urgency of development of composite materials to be used in body armor plates and the potential of application of spodumene glass-ceramic materials as a layer that combines disintegrating and damping properties in the composite structure of a body armor element. The proposed glass-ceramic materials, when subjected to a two-stage low-temperature heat treatment, undergo a bulk fine crystallization with the presence of β-spodumene, thus achieving high mechanical characteristics.

Keywords

glass-ceramic materials spodumene mechanical characteristics body armor plates 

References

  1. 1.
    V. A. Grigoryan, I. F. Kobylkin, V. M. Marinin, and E. N. Chistyakov, Materials and Protective Structures for Local and Individual Armoring [in Russian], RadioSoft, Moscow (2008).Google Scholar
  2. 2.
    Jerry C. LaSalvia, Advances in Ceramics Armor X, in: Ceramic Engineering and Science Proceedings, Volume 35, Issue 4, 2014, Wiley (2015).Google Scholar
  3. 3.
    V. Cannillo, L. Lusvarghi, T. Manfredini, et al., “Glass-ceramic functionally graded materials produced with different methods,” J. Eur. Ceram. Soc., 27, Nos. 2–3, 1293–1298 (2007).CrossRefGoogle Scholar
  4. 4.
    V. D. Khalilev, A. A. Androkhanov, Yu. Yu. Merkulov, and M. V. Koroleva, High-Strength Glass-Ceramic Material and Method for Its Production [in Russian], RF Patent No. 2169712. Publ. on June 27, 2001, Bull. No. 34.Google Scholar
  5. 5.
    F. Siebers, H.-J. Lemke, K. Schaupert, and T. Zachau, Glass Ceramic Armor Material, US Patent 2010/0263525 A1 F41H 5/02 C03C 10/10 C03C 10/12. Publ. on October 21, 2010.Google Scholar
  6. 6.
    R&D Support for the Military-Industrial Complex of Ukraine: Proc. of Information Communicative Event (September 22–23, 2015, Kyiv) [in Ukrainian], International Expo Center, Kyiv (2015).Google Scholar
  7. 7.
    L. L. Bragina, O. V. Savvova, O. V. Babich, and Yu. O. Sobol’, Structure and Properties of Glass-Ceramic Materials [in Ukrainian], SMIT, Kharkiv (2016).Google Scholar
  8. 8.
    P. D. Sarkisov, Directional Crystallization of Glass as a Basis for Producing Multifunctional Glass-Ceramic Materials [in Russian], Dmitry Mendeleev University of Chemical Technology of Russia, Moscow (1997).Google Scholar
  9. 9.
    J. G. Darrant and C. Thompson, Making a Transparent Glass-Ceramic Armour, UK Patent GB 2379659 A, MPK7 C 03 B 32/02. Publ. on March 19, 2003.Google Scholar
  10. 10.
    E. I. Suzdal’tsev, V. V. Vikulin, M. Yu. Rusin, et al., A Method for Producing Articles of a Sintered Glass-Ceramic Material of Lithium-Alumina-Silicate Composition [in Russian], RF Patent No. 2222504. Publ. on January 27, 2004, Bull. No. 3.Google Scholar
  11. 11.
    O. S. Tret’yakov, I. P. Chelpanov, B. D. Zhygailo, et al., Catalyst for Ammonia Oxidation [in Ukrainian], Ukraine Patent No. 33014. Valid since February 15, 2001.Google Scholar
  12. 12.
    A. M. Raikhel’, O. A. Nepomnyashchii, L. G. Ivchenko, and N. L. Trushina, “Fracture toughness of technical glasses and glass-ceramic materials,” Steklo Keram., No. 10, 18–19 (1991).Google Scholar
  13. 13.
    N. A. Toropov and E. A. Porai-Koshits, Structural Transformations in Glasses at High Temperatures [in Russian], Nauka, Moscow (1965).Google Scholar
  14. 14.
    A. G. Alekseev, V. V. Vargin, V. N. Vertsner, et al., Catalyzed Controlled Crystallization of Lithium-Alumina-Silicate Glasses [in Russian], Part 1, Khimiya, Leningrad–Moscow (1964).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • O. V. Savvova
    • 1
  • O. V. Babich
    • 1
  • G. K. Voronov
    • 1
  • S. O. Ryabinin
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations