Strength of Materials

, Volume 49, Issue 3, pp 472–478 | Cite as

Assessment of the Service Reliability of Elastoplastic Sheet Materials From Hardness Parameters

  • N. R. Muzyka
  • V. P. Lamashevskii

A new method for the assessment of the service reliability of cracked metallic sheet materials from hardness parameters is proposed. It has been shown that the state of the material in the pre-fracture zone of a uniaxially loaded specimen, which is acted upon by a stress that is close to the ultimate strength of the material, corresponds to the state of the damaged material in the crack tip zone before crack initiation.


service reliability sheet material static tension hardness coefficient of homogeneity crack tip fracture toughness plastic zone 


  1. 1.
    L. A. Sosnovskii, N. A. Makhutov, A. M. Bordovskii, and V. V. Vorob’ev, “Statistical estimation of the degradation of properties of the petroleum pipeline material,” Zavod. Lab. Diagn. Mater., No. 11, 40–49 (2003).Google Scholar
  2. 2.
    GOST 25.506–85. Methods for the Mechanical Testing of Metals. Determination of Crack Resistance (Fracture Toughness) Characteristics under Static Loading [in Russian]. Introduced on March 27, 1985.Google Scholar
  3. 3.
    A. Ya. Krasovskii and V. A. Vainshtok, “A failure criterion of materials taking into consideration the form of the stressed state at the crack apex,” Strength Mater., 10, No. 5, 559–565 (1978).CrossRefGoogle Scholar
  4. 4.
    N. V. Oleinik and Ngo Van Kuet, “Determining fracture toughness of materials by reference to their mechanical properties,” Strength Mater., 8, No. 1, 71–75 (1976).CrossRefGoogle Scholar
  5. 5.
    V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, “Determination of the fracture toughness of structural materials trough their mechanical characteristics and structure parameter,” Fiz.-Khim. Mekh. Mater., No. 2, 120–137 (1977).Google Scholar
  6. 6.
    A. A. Lebedev, N. R. Muzyka, and V. P. Shvets, “A method for fracture toughness assessment by the scatter of hardness characteristics,” Strength Mater., 39, No. 6, 567–571 (2007).CrossRefGoogle Scholar
  7. 7.
    O. N. Romaniv and A. N. Tkach, “Micromechanical modeling of the fracture toughness of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 5–22 (1977).Google Scholar
  8. 8.
    A. A. Lebedev and N. R. Muzyka, Testing Methods for and Fracture Mechanics of Sheet Materials under Biaxial Tension [in Russian], Nadstyr’e, Lutsk (2004).Google Scholar
  9. 9.
    N. R. Muzyka, “Propagation of a through crack in a sheet material under biaxial tension,” Strength Mater., 30, No. 4, 393–397 (1998).CrossRefGoogle Scholar
  10. 10.
    P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solid Body [in Russian], Énergoatomizdat, Moscow (1990).Google Scholar
  11. 11.
    A. Ya. Aleksandrov, M. Kh. Akhmetzyanov, G. N. Albaut, et al, “On polarization optical stusies at high strains,” Prikl. Mekh. Tekhn. Fiz., No. 5, 89–99 (1969).Google Scholar
  12. 12.
    S. D. Volkov, “Strength and the mechanics of failure,” Strength Mater., 10, No. 7, 739–746 (1978).CrossRefGoogle Scholar
  13. 13.
    A. A. Baron, “Relationship between fracture toughness and deformation ahead of the crack tip,” Strength Mater., 29, No. 2, 125–130 (1997).CrossRefGoogle Scholar
  14. 14.
    A. A. Lebedev and N. R. Muzyka, “Load-carrying capacity of a cracked plate under biaxial tension,” Strength Mater., 33, No. 2, 106–111 (2001).CrossRefGoogle Scholar
  15. 15.
    N. A. Kurnysheva, Coupled (Plasticity-Damage) Problems of the Mechanics of Deformable Media [in Russian], Author’s Abstract of the Candidate Degree Thesis (Phys.-Math. Sci.), Cheboksary (2007).Google Scholar
  16. 16.
    A. O. Lebedev, M. R. Muzyka, and V. P. Shvets, ethod for the Determination of the Fracture Toughness of Materials [in Ukrainian], Patent of Ukraine 13952. Valid since April 4, 2006.Google Scholar
  17. 17.
    V. I. Trefilov, O. N. Grigor’ev, and A. M. Shatokhin, “On the effect of the structural state of brittle materials on the load dependence of hardness,” Dokl. AN SSSR, 259, No. 4, 836–839 (1981).Google Scholar
  18. 18.
    S. N. Dub and N. V. Novikov, “Hardness testing of solid bodies,” Sverkhtverd. Mater., No. 6, 16–33 (2004).Google Scholar
  19. 19.
    V. I. Koshkin, Evaluation of the Structure and Mechanical Properties of Materials from Statistical Microhardnis Characteristics [in Russian], RITs MGIU, Moscow (2001).Google Scholar
  20. 20.
    M. E. Getmanova, O. V. Livanova, G. A. Fillipov, et al, “Structural inhomogeneity and fracture toughness of wheel steel,” Deform. Razr. Metall., No. 12, 32–37 (2006).Google Scholar
  21. 21.
    A. V. Vikulin, Yu. P. Soltsev, and V. V. Skobkin, “Effects of loading rate and temperature on cracking resistance in steel,” Strength Mater., 24, No. 7, 457–459 (1992). (1992).Google Scholar
  22. 22.
    V. M. Avaev and S. V. Zhuravlev, Method for the Determination of the Fracture Toughness of Material [in Russian], Inventor’s Certificate USSR 796706. Publ. on January 20, 1981.Google Scholar
  23. 23.
    V. M. Kornev and V. D. Kurguzov, “Multiparametric sufficient criterion of quasi-brittle strength for combined stress,” Fiz. Mezomekh., 9, No. 5, 43–52 (2006).Google Scholar
  24. 24.
    J. N. Kass, J. A. Begley, and H. Andrejasik, “Crack initiation and growth in plane strain” J. Test. Eval., 2, No. 4, 304–316 (1974).CrossRefGoogle Scholar
  25. 25.
    V. V. Panasyuk, L. H. Berezhnyts’kyi, and R. S. Hrom’yak, “On the effect of material structure on crack propagation during the stretching of a body,” Dop. AN URSR, Ser. A, No. 9, 811–816 (1976).Google Scholar
  26. 26.
    V. T. Troshchenko, P. V. Yasnii, V. V. Pokrovskii, and V. Yu. Podkol’zin, “Nature of scatter of fracture toughness in static loading,” Strength Mater., 22, No. 2, 164–171 (1990).CrossRefGoogle Scholar
  27. 27.
    V. V. Novozhilov, “On plastic loosening,” Prikl. Mekh. Matem., 29, Issue 4, 681–689 (1965).Google Scholar
  28. 28.
    A. A. Dolgorukov, N. A. Makhutov, and V. N. Shlyannikov, “Peculiarities of the solution of the problems of nonlinear crack mechanics under biaxial loading in arbitrary direction,” Dokl. AN SSSR, 315, 1073–1076 (1990).Google Scholar
  29. 29.
    R. Mokka, H. Kotilainen, and J. Forstan, “Hardness variations of the plastic zone area in bent COD specimens,” Scand. J. Metall., 3, No. 1, 38–40 (1974).Google Scholar
  30. 30.
    DSTU 7793. Metallic Materials. Determination of the Level of Scattered Damages by the LM-Hardness Method [in Ukrainian], Valid since April 1, 2017.Google Scholar
  31. 31.
    N. R. Muzyka, I. V. Makovetskii, and V. P. Shvets, “Evaluation of the influence of the level of stresses in the material on its in-service damageability,” Strength Mater., 40, No. 4, 469–473 (2008).CrossRefGoogle Scholar
  32. 32.
    DSTU EN 10002-1: 2006. Metallic Materials. Tensile Testing. Part 1. Room-Temperature Test Method [in Ukrainian], Valid since April 1, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • N. R. Muzyka
    • 1
  • V. P. Lamashevskii
    • 1
  1. 1.Pisarenko Institute of Problems of StrengthNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations