Strength of Materials

, Volume 49, Issue 3, pp 453–463 | Cite as

Assessment of Elasticity Characteristics and Strength Parameters of Unidirectional Polymer Composites at High Temperatures

  • N. K. Kucher
  • A. A. Samusenko

Within the framework of transversally isotropic body, the possibilities of describing the elasticity characteristics and load-bearing capacity of unidirectional carbon-reinforced polymer composites at high temperatures are analyzed. The dependences of the elasticity characteristics and strength parameters of the composite on the heating temperature and rate are established. The models for calculation of strength characteristics of ablating composite in cases of tensile or compressive loads codirected with the reinforcement axis are developed and discussed.


unidirectional ablating composite deformation elasticity characteristics strength in the reinforcement direction high temperatures 


  1. 1.
    A. V. Kondrat’ev and V. A. Kovalenko, “Overview and analysis of world tendencies and problems of extending the use of polymer composite materials in the rocket-and-space aggregates,” Vopr. Proekt. Proizv. Konstr. Letat. Apparat., No. 3 (67), 7–18 (2011).Google Scholar
  2. 2.
    E. Fitzer (Ed.), Carbon Fibres and Their Composites, Springer-Verlag, Berlin (1985).Google Scholar
  3. 3.
    Yu. A. Mikhailin, Stuctural Polimeric Composite Materials [in Russian], NOT, St.-Petersburg (2008).Google Scholar
  4. 4.
    B. A. Grabin, Basics of Rocket Carriers’ Design [in Russian], Mashinostroenie, Moscow (1991).Google Scholar
  5. 5.
    V. A. Kargin (Ed.), Polymer Encyclopedia [in Russian], Soviet Encyclopedia, Moscow (1972).Google Scholar
  6. 6.
    M. A. Grinfeld, Application of Continuum Mechanics Methods to Phase Transformation Theory [in Russian], Nauka, Moscow (1990).Google Scholar
  7. 7.
    R. I. Nigmatulin, Basics of Heterogenous Continuum Mechanics [in Russian], Nauka, Moscow (1978).Google Scholar
  8. 8.
    Yu. I. Dimitrienko, Termomechanics of Composites under High Temperatures, Kluwer Academic Publisher, Dordrecht–Boston–London (1999).CrossRefGoogle Scholar
  9. 9.
    S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory: review,” Usp. Fiz. Nauk, 172, No. 3, 301–333 (2002).CrossRefGoogle Scholar
  10. 10.
    Composite Materials Handbook, Vol. 2: Polymer Matrix Composites: Materials Properties, MIL-HDBK-17-2F, US Department of Defense (2002).Google Scholar
  11. 11.
    E. L. Danil’chuk, N. K. Kucher, A. P. Kushnarev, et al., “Deformation and strength of unidirectional carbon-fiber-reinforced plastics at elevated temperatures,” Strength Mater., 47, No. 4, 573–578 (2015).CrossRefGoogle Scholar
  12. 12.
    R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).Google Scholar
  13. 13.
    S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).Google Scholar
  14. 14.
    N. N. Lebedev, Special Functions and Their Applications [in Russian], GIFML, Moscow (1963).Google Scholar
  15. 15.
    V. P. Tamuzh and V. D. Protasova (Eds.), I. V. Grushevskii, I. P. Dimitrenko, A. F. Yarmolenko, et al., Fracture of Structures from Composite Materials [in Russian], Zinantne, Riga (1986).Google Scholar
  16. 16.
    Yury Dimitrienko, “Modelling of the mechanical properties of composite materials at high temperatures: Part 2. Properties of unidirectional composites,” Appl. Compos. Mater., 4, No. 4, 239–261 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Pisarenko Institute of Problems of StrengthNational Academy of Sciences of UkraineKievUkraine
  2. 2.Yangel Yuzhnoye State Design OfficeDneprUkraine

Personalised recommendations