Advertisement

Strength of Materials

, Volume 49, Issue 3, pp 429–435 | Cite as

Optimization of the High-Temperature Induction Treatment Modes for Nonlinear Electroconductive Bodies

  • O. R. Hachkevych
  • B. D. Drobenko
  • P. I. Vankevych
  • M. Yu. Yakovlev
Article

This paper proposes an approach to the computer simulation of electromagnetic, thermal and mechanical fields in ferromagnetic bodies based on the developed mathematical model for the description of thermo-mechanical processes in electroconductive bodies having different magnetizability and polarizability under electric field conditions. The results of the investigation on the modes of high-temperature induction treatment of bodies made of different ferromagnetic materials are presented. It is shown that by selecting the electric current frequency at the stage of heating and the subsequent cooling conditions, it is possible either to generate residual stresses in bodies, that are close to the given ones, or to reduce the duration of the heat treatment of workpieces under stress constraints.

Keywords

strength coupling fields finite element method 

References

  1. 1.
    Ya. S. Podstrigach, Ya. I. Burak, A. R. Gachkevich, and L. V. Chernyavskaya, Thermoelsticity of Electroconductive Bodies [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  2. 2.
    A. Gaczkiewicz and Z. Kasperski, Models and Mathematical Methods in the Thermomechanics Problems of Electroconductive Bodies [in Polish], Politechnika Opolska, Opole (1999).Google Scholar
  3. 3.
    Ya. I. Burak and R. M. Kushnir (Eds.), Modeling and Optimization in the Thermomechanics of Electroconductive Bodies [in Ukrainian], Vol. 1: Ya. I. Burak, O. R. Hachkevych, and R. F. Terlets’kyi, Thermomechanics of Multicomponent Bodies of Low Electric Conductivity, SPOLOM, Lviv (2006).Google Scholar
  4. 4.
    Ya. I. Burak and R. M. Kushnir (Eds.), Modeling and Optimization in the Thermomechanics of Electroconductive Bodies [in Ukrainian], Vol. 4: O. R. Hachkevych and B. D. Drobenko, Thermomechanics of Magnetized Electroconductive Thermosensitive Bodies, SPOLOM, Lviv (2006)Google Scholar
  5. 5.
    F. Bay, V. Labbe, Y. Favennec, and J. L. Chenot, “A numerical model for induction heating processes coupling electromagnetism and thermomechanics,” Int. J. Num. Meth. Eng., 58, No. 6, 839–867 (2003).CrossRefGoogle Scholar
  6. 6.
    I. G. Pantelyat and J. Zgraja, “Inductive heating of large steel disks: coupled electromagnetic, thermal and mechanical simulation,” Int. J. Appl. Electromagn. Mech., 10, 185–192 (1999).Google Scholar
  7. 7.
    I. Magnabosco, P. Ferro, A. Tiziani, and F. Bonollo, “Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis,” Comput. Mater. Sci., 35, 98–106 (2006).CrossRefGoogle Scholar
  8. 8.
    D. H. Kim, B. M. Kim, C. G. and Kang, “Die life considering the deviation of the preheating billet temperature in hot forging process,” Finite Elem. Anal. Des., 41, 1255–1269 (2005).Google Scholar
  9. 9.
    B. Drobenko, O. Hachkevych, and T. Kournyts’kyi, “A mathematical simulation of high temperature induction heating of electroconductive solids,” Int. J. Heat Mass Transfer, 50, 616–624 (2007).Google Scholar
  10. 10.
    B. Drobenko, O. Hachkevych, and T. Kournyts’kyi, “Thermomechanical behaviour of polarizable and magnetizable electroconductive solids subjected to induction heating,” J. Eng. Math., 61, Nos. 2–4, 249–269 (2008).Google Scholar
  11. 11.
    D. H. Allen and W. E. Heisler, “A theory for analysis of thermoplastic materials,” Comput. Struct., 13, 129–135 (1981).CrossRefGoogle Scholar
  12. 12.
    A. A. Preobrazhenskii, Magnetic Materials and Components [in Russian], Vysshaya Shkola, Moscow (1976).Google Scholar
  13. 13.
    J. Turowski, Engineering Electrodynamics [in Polish], WNT, Warsaw (1993).Google Scholar
  14. 14.
    E. R. Khismatulin (Ed.), High-Pressure Vessels and Pipelines. Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  15. 15.
    I. K. Kikoin (Ed.), Tables of Physical Quantities [in Russian], Àtomizdat, Moscow (1976).Google Scholar
  16. 16.
    G. F. Golovin and M. M. Zamyatin, High-Frequency Heat Treatment [in Russian], Mashinostroenie, Leningrad (1990).Google Scholar
  17. 17.
    N. P. Bogorodskii, V. V. Pasynkov, and B. M. Tareev, Electrotechnical Materials [in Russian], Énergiya, Leningrad (1977).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • O. R. Hachkevych
    • 1
  • B. D. Drobenko
    • 1
  • P. I. Vankevych
    • 2
  • M. Yu. Yakovlev
    • 2
  1. 1.Pidstryhach Institute for Applied Problems of Mechanics and MathematicsNational Academy of Sciences of Ukraine (NASU)LvivUkraine
  2. 2.Hetman Petro Sahaidachny National Army AcademyLvivUkraine

Personalised recommendations