Strength of Materials

, Volume 49, Issue 3, pp 369–380 | Cite as

Effect of the Indenting Electrode Impact on the Stress-Strain State of an AMg6 Alloy on Electrodynamic Treatment

  • L. M. Lobanov
  • M. O. Pashchyn
  • O. L. Mykhodui
  • Yu. M. Sydorenko

The calculation model of the impact indenting electrode interaction with an AMg6 aluminum alloy plate on the electrodynamic treatment of weld joints is described. The problem was solved in the Lagrange two-dimensional statement with an ANSYS/LS-DYNA program. Calculation results for residual stress and plastic strain regions formed on the elastoplastic indenting electrode impact are presented.


electrodynamic treatment aluminum alloy impact interaction residual stresses plastic strains finiteelement model indenting electrode theory of plastic flow 


  1. 1.
    K. Masubuchi, Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences, Pergamon Press, Oxford–New York (1980).Google Scholar
  2. 2.
    G. K. Lashchenko and Yu. V. Demchenko, Energy-Saving Technologies of the Postweld Treatment of Metal Structures [in Russian], Ékotekhnologiya, Kiev (2008).Google Scholar
  3. 3.
    L. M. Lobanov, N. A. Pashchin, O. L. Mikhodui, and J. A. Khokhlova, “Investigation of residual stress in welded joints of heat-resistant magnesium alloy ML10 after electrodynamic treatment,” J. Magnes. Alloys, 4, No. 2, 77–82 (2016).CrossRefGoogle Scholar
  4. 4.
    L. M. Lobanov, N. A. Pashchin, and O. L. Mikhodui, “Repair of the AMg6 aluminum alloy welded structure by the electric processing method,” Weld Res. Appl., No. 1, 55–62 (2014).Google Scholar
  5. 5.
    L. M. Lobanov, N. A. Pashchin, A. N. Timoshenko, et al., “Effect of the electrodynamic treatment on the life of AMg6 aluminum alloy weld joints,” Strength Mater., 49, No. 2, 234–238 (2017).CrossRefGoogle Scholar
  6. 6.
    Yu. M. Sidorenko and P. S. Shlenskii, “On the assessment of stress-strain state of the load-bearing structural elements in the tubular explosion chamber,” Strength Mater., 45, No. 2, 210–220 (2013).CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    A. Yu. Muizemnek and A. A. Bogach, Mathematical Simulation of Impact and Explosion in an LS-DYNA Program. Text Book [in Russian], PGU, Penza (2005).Google Scholar
  10. 10.
    V. V. Selivanov (Ed.), A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, et al., Numerical Methods in Explosion and Impact Physics Problems [in Russian], Vol. 3, Bauman MGTU, Moscow (2000).Google Scholar
  11. 11.
    K. M. Rudakov, Numerical Methods of Analysis in the Dynamics and Strength of Constructions [in Ukrainian], NTUU “KPI,” Kyiv (2007).Google Scholar
  12. 12.
    V. A. Odintsov and Yu. M. Sidorenko, “Simulation of the explosion process of a standard fission cylinder with a different degree of detailing,” Oboron. Tekhn., Nos. 1–2, 17–20 (2001).Google Scholar
  13. 13.
    L. P. Orlenko (Ed.), S. G. Andreev, Yu. A. Babkin, F. A. Baum, et al., Physics of Explosion [in Russian], Vol. 2, Fizmatlit, Moscow (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • L. M. Lobanov
    • 1
  • M. O. Pashchyn
    • 1
  • O. L. Mykhodui
    • 1
  • Yu. M. Sydorenko
    • 2
  1. 1.Paton Electric Welding InstituteNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”|KyivUkraine

Personalised recommendations