Skip to main content
Log in

Isothermal Crystallization Kinetics Effect on the Tensile Properties of PLA/PTT Polymer Composites

  • Published:
Strength of Materials Aims and scope

A poly(lactic acid)/poly(trimethylene terephthalate) (PLA/PTT) composite was prepared by melt blending to improve the PTT crystallization rate. Morphology analysis of PLA/PTT fractured surfaces demonstrated the compatibility of its components. Thermogravimetric analysis revealed that the thermodegradation of a PLA/PTT sample was higher than that of PLA. Differential scanning calorimetry was used to evaluate the crystallization behavior. The Avrami equation described the isothermal crystallization kinetics. The Hoffman–Weeks parameters indicated that the PLA presence increased slightly the PTT nucleation. The tests of PLA, PTT, and PLA/PTT specimens in tension showed that a percent elongation of the PLA/PTT composite was between that of PLA and PTT; however, the tensile strength of the PLA/PTT composite was similar to that of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. S.-L. Yang, Z.-H. Wu, W. Yang, et al., “Thermal and mechanical properties of chemical cross-linked polylactide (PLA),” Polym. Test., 27, No. 8, 957–963 (2008).

    Article  Google Scholar 

  2. X. He and D. Yang, “Banded spherulites grown from poly(trimethylene terephthalate) solution-cast film,” J. Wuhan Univ. Technol., 23, No. 6, 791–794 (2008).

    Article  Google Scholar 

  3. H. Chuah, “Orientation and structure development in poly(trimethylene terephthalate) tensile drawing,” Macromolecules, 34, No. 20, 6985–6993 (2001).

    Article  Google Scholar 

  4. S. Grebowicz, H. Brown, H. Chuah, et al., “Deformation of undrawn poly(trimethylene terephthalate) (PTT) fibers,” Polymer, 42, No. 16, 7153–7160 (2001).

    Article  Google Scholar 

  5. J. Zhang, “Study of poly(trimethylene terephthalate) as an engineering thermoplastics material,” J. Appl. Polym. Sci., 91, No. 3, 1657–1666 (2004).

    Article  Google Scholar 

  6. C.-H. Tsou, W.-S. Hung, C.-S. Wu, et al., “New composition of maleic-anhydride-grafted poly(lactic acid)/rice husk with methylenediphenyldiisocyanate,” Mater. Sci.-Medzg., 20, No. 4, 446–451 (2015).

    Google Scholar 

  7. H. B. Ravikumar, C. Ranganathaiah, G. N. Kumaraswamy, and S. Thomas, “Positron annihilation and differential scanning calorimetric study of poly(trimethylene terephthalate)/EPDM blends,” Polymer, 46, No. 7, 2372–2380 (2005).

    Article  Google Scholar 

  8. C.-H. Tsou, H.-T. Lee, M. De Guzman, et al., “Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O,” Polym. Bull., 72, No. 7, 1545– 1561 (2015).

    Article  Google Scholar 

  9. A. J. Oshinski, H. Keskkula, and D. R. Paul, “Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6,” Polymer, 33, No. 2, 268–283 (1992).

    Article  Google Scholar 

  10. C.-H. Tsou, H.-T. Lee, W.-S. Hung, et al., “Synthesis and properties of antibacterial polyurethane with novel Bis(3-pyridinemethanol) silver chain extender,” Polymer, 85, 96–105 (2016).

    Article  Google Scholar 

  11. C.-H. Tsou, H.-T. Lee, H.-A. Tsai, et al., “Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender,” J. Polym. Degrad. Stabil., 98, No. 2, 643–650 (2013).

    Article  Google Scholar 

  12. C.-Y. Tsou, C.-L. Wu, C.-H. Tsou, et al., “Biodegradable composition of poly(lactic acid) from renewable wood flour,” Polym. Sci. Ser. B+, 57, No. 5, 473–480 (2015).

    Article  Google Scholar 

  13. P. A. Tzika, M. C. Boyce, and D. M. Parks, “Micromechanics of deformation in particle-toughened polyamides,” J. Mech. Phys. Solids, 48, No. 9, 1893–1929 (2000).

    Article  Google Scholar 

  14. C.-H.Tsou, H.-T. Lee, W.-S. Hung, et al., “Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units,” Polym. Bull., DOI 10.1007/s00289-016-1767-3 (2016).

    Google Scholar 

  15. M.-C. Yang, B.-J. Kao, M.-C. Suen, et al., “The properties and a new preparation of ethylene propylene dienemonomer/montmorillonite nanocomposites,” Polym. Polym. Compos., 23, No. 3, 181–190 (2015).

    Google Scholar 

  16. C. Zhou, M. Chen, Z. Y. Tan, et al., “The influence of arrangement of St in MBS on the properties of PVC/MBS blends,” Eur. Polym. J., 42, No. 8, 1811–1818 (2006).

    Article  Google Scholar 

  17. C.-H. Tsou, M.-C. Suen, W.-Y. Wu, et al., “Crystallization behavior and tensile property of poly (trimethyleneterephthalate)/styrene-ethylene-buthylene-styrene composites,” J. Wuhan Univ. Technol., 31, No. 2, 474–480 (2016).

    Article  Google Scholar 

  18. C.-H. Tsou, M.-C. Suen, W.-H. Yao, et al., “Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as plasticizer,” Materials, 7, No. 8, 5617–5632 (2014).

    Article  Google Scholar 

  19. K. Wang, Y. Chen, and Y. Zhang, “Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/organoclay ternary nanocomposites,” Polymer, 49, No. 15, 3301–3309 (2008).

    Article  Google Scholar 

  20. D. Juárez, S. Ferrand, O. Fenollar, et al., “Improvement of thermal inertia of styrene-ethylene/butylenestyrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs),” Eur. Polym. J., 47, No. 2, 153–161 (2011).

    Article  Google Scholar 

  21. C.-H. Tsou, B.-J. Kao, M.-C. Yang, et al. “Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites,” Biomed. Mater. Eng., 26, Suppl. 1, S147–S154 (2015).

    Google Scholar 

  22. N. R. Savadekar and S. T. Mhaske, “The effect of vulcanized thermoplastics and SEBS on the impact strength of PPT,” Polym.-Plast. Technol., 49, No. 15, 1499–1505 (2010).

    Article  Google Scholar 

  23. H. Zou, L. Wang, C. Yi, and H. Gan, “Thermal properties and non-isothermal crystallization behavior of poly(trimethylene terephthalate)/poly(lactic acid) blends,” Polym. Int., 60, No. 9, 1349–1354 (2011).

    Google Scholar 

  24. M. Pyda, A. Boller, J. Grebowicz, et al., “Heat capacity of poly(trimethylene terephthalate),” J. Polym. Sci. Polym. Phys., 36, No. 14, 2499–2511 (1998).

    Article  Google Scholar 

  25. M. Avrami, “Kinetics of phase change. I: General theory,” J. Chem. Phys., 7, No. 12, 1103–1112 (2004).

    Article  Google Scholar 

  26. P. Srimoaon, N. Dangseeyun, and P. Supaphol, “Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate),” Eur. Polym. J., 40, No. 3, 599–608 (2004).

    Article  Google Scholar 

  27. S. I. Han, S. W. Kang, B. S. Kim, et al., “A novel polymeric ionomer as a potential biomaterial: Crystallization behavior, degradation, and in-vitro cellular interactions,” Adv. Funct. Mater., 15, 367–374 (2005).

    Article  Google Scholar 

  28. C.-H. Tsou, B.-J. Kao, M.-C. Suen, et al., “Crystallization behavior and biocompatibility of poly(butylene succinate)/poly(lactic acid) composites,” Mater. Res. Innov., 18, No. S2, S2-372–S2-376 (2014).

  29. N. Dangseeyun, P. Supaphol, and M. Nithitanakul, “Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends,” Polym. Test., 23, No. 2, 187–194 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-H. Tsou.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 190 – 199, January – February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsou, CY., Wu, CL., Tseng, YC. et al. Isothermal Crystallization Kinetics Effect on the Tensile Properties of PLA/PTT Polymer Composites. Strength Mater 49, 171–179 (2017). https://doi.org/10.1007/s11223-017-9855-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-017-9855-7

Keywords

Navigation