Skip to main content
Log in

Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions

  • Published:
Strength of Materials Aims and scope

The mechanism of crack propagation in concrete specimens containing cracks under shear loading conditions is studied. The shear box test of pre-cracked (double edge cracks) concrete specimens is carried out under laboratory conditions. The higher order displacement discontinuity formulation and the special crack tip elements for the treatment of crack ends is used to numerically simulate the crack propagation mechanism of brittle solids under direct shear loading. A special modeling technique is also proposed to take into account the effect of crack overlapping on the fracturing process of the bridge area in between the two parallel cracks. In this study, the wing cracks are produced at the first stage of loading and continued their propagation paths toward the shear loading direction. The crack propagation path of the double edge cracked specimens in the bridge area is mostly affected by ligament angles and crack length whereas the shear strength is closely related to the failure pattern. The coalescence mechanism of cracks indicated that the pre-cracked concrete failure occurs in mixed mode in case of non-overlapping cracks configuration and in tensile mode for the overlapping cracks. Finally, comparing the numerical and experimental results validated the crack propagation modeling and verified the accuracy and efficiency of the proposed numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).

    Article  Google Scholar 

  2. N. R. Barton, “Review of a new shear strength criterion for rock joints,” Eng. Geol., 7, 287–332 (1973).

    Article  Google Scholar 

  3. B. Ladany and G. Archambault, “Simulation of shear behavior of a jointed rock mass,” in: Proc. of the 11th Symp. Rock Mechanics (ATME) (1970), pp. 105–125.

  4. Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Part II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, No. 4, 407–423 (1967).

  5. A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).

    Article  Google Scholar 

  6. A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998b).

    Article  Google Scholar 

  7. T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300.

  8. R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden (2001), pp. 843–849.

  9. C. Gehle and H. K. Kutter, “Breakage and shear behavior of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).

    Article  Google Scholar 

  10. A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Lisbon, Portugal (2007).

  11. A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2011).

    Google Scholar 

  12. V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2013), doi: 10.1007/s00603-013-0450-3.

    Article  Google Scholar 

  13. K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., 26, 141–154 (1984).

    Article  Google Scholar 

  14. H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).

    Article  Google Scholar 

  15. J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).

    Article  Google Scholar 

  16. P. S. Theocaris and M. Sakellariou, “Crack propagation in brittle materials under compressive stresses studied by caustics,” J. Mater. Sci., 26, No. 6, 1640–1646 (1991).

    Article  Google Scholar 

  17. R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).

    Article  Google Scholar 

  18. Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).

    Article  Google Scholar 

  19. C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2008).

  20. S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).

    Article  Google Scholar 

  21. C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: a comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).

    Article  Google Scholar 

  22. C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).

    Article  Google Scholar 

  23. R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).

    Article  Google Scholar 

  24. S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).

    Article  Google Scholar 

  25. P. Cheng-zhi and C. Ping, “Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).

    Article  Google Scholar 

  26. K. Wallin, “A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests,” Eng. Fract. Mech., 99, 18–29 (2013).

    Article  Google Scholar 

  27. A. R. Ingraffea and F. E. Heuze, “Finite element models for rock fracture mechanics,” Int. J. Num. Anal. Meth. Geomech., 4, 25–43 (1980).

    Article  Google Scholar 

  28. M. Fatehi Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).

    Article  Google Scholar 

  29. M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis,” JP J. Solids Struct., 1, 61–91 (2007).

    Google Scholar 

  30. C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).

    Article  Google Scholar 

  31. R. H. C. Wong, C. A Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).

  32. F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).

    Article  Google Scholar 

  33. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28.

  34. G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).

    Article  Google Scholar 

  35. B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).

    Article  Google Scholar 

  36. M. F. Marji, H. Hosseinin–Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, 1669– 1692 (2006).

  37. M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365– 382 (2013).

    Article  Google Scholar 

  38. H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “A coupled numerical- experimental study of the breakage process of brittle substances,” Arabian J. Geosci., 8, No. 2, 809–825 (2013), doi: 10.1007/s12517-013-1165-1.

  39. H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).

    Article  Google Scholar 

  40. H. Haeri, M. F. Marji, K. Shahriar, and P. Moarefvand, “On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances,” Arabian J. Geosci., 8, No. 5, 2841–2852 (2015), doi: 10.1007/s12517-014-1290-5.

    Article  Google Scholar 

  41. H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).

    Article  Google Scholar 

  42. H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arabian J. Geosci., 8, No. 6, (2014), doi: 10.1007/s12517-014-1489-5.

  43. J. T. Chen and H. K. Hong, “Review of dual boundary elements methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, 17–33 (1999).

    Article  Google Scholar 

  44. M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998).

    Google Scholar 

  45. Q. Rao, Z. Sun, O. Stephansson, et al., “Shear fracture (mode II) of brittle rock,” Int. J. Rock Mech. Min. Sci., 40, 355–375 (2003).

    Article  Google Scholar 

  46. S. Kahraman and R. Altindag, “A brittleness index to estimate fracture toughness,” Int. J. Rock Mech. Min. Sci., 41, 343–348 (2004).

    Article  Google Scholar 

  47. K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack problems,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 49–55 (1995).

    Article  Google Scholar 

  48. S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota (1967).

  49. H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).

    Article  Google Scholar 

  50. C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).

    Article  Google Scholar 

  51. M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).

    Book  Google Scholar 

  52. M. F. Marji, H. Hosseini-Nasab, and A. Hosseinmorsgedy, “Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters,” J. Mech. Mater. Struct., 2, 439–457 (2009).

    Google Scholar 

  53. G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haeri.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 130 – 146, July – August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeri, H. Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions. Strength Mater 47, 618–632 (2015). https://doi.org/10.1007/s11223-015-9698-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-015-9698-z

Keywords

Navigation