Skip to main content
Log in

Cyclic Plastic Response and Damage in Materials for High Temperature Applications*

  • Published:
Strength of Materials Aims and scope

The characteristic changes of the cyclic plastic stress–strain response of stainless steel and superalloys derived from the analysis of hysteresis loop at different temperatures are reported. The evolution of the surface relief in strain controlled cycling is documented using high resolution SEM and TEM. The mechanisms leading to cyclic strain localization, formation of surface relief, fatigue crack initiation and early crack growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Ohtani, “High-temperature fatigue,” in: I. Milne, R. O. Ritchie, and B. Karihaloo (Eds.), Comprehensive Structural Integrity, Vol. 4, Elsevier, Amsterdam (2003), pp. 327–344.

    Chapter  Google Scholar 

  2. A. Pineau and S. D. Antolovich, “High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation,” Eng. Failure Anal., 16, 2668–2697 (2009).

    Article  Google Scholar 

  3. M. Petrenec, K. Obrtlík, and J. Polák, “Inhomogeneous dislocation structure in fatigued INCONEL 713LC superalloy at room and elevated temperatures,” Mater. Sci. Eng., A400-401, 485–488 (2005).

    Article  Google Scholar 

  4. J. Polák, “Cyclic deformation, crack initiation, and low cycle fatigue,” in: I. Milne, R. O. Ritchie, and B. Karihaloo (Eds.), Comprehensive Structural Integrity, Vol. 4, Elsevier, Amsterdam, (2003), pp. 1–39.

    Chapter  Google Scholar 

  5. J. Man, K. Obrtlík, and J. Polák, “Extrusions and intrusions in fatigued metals. Part 1. State of the art and history,” Phil. Mag., 89, 1295–1336 (2009).

    Article  Google Scholar 

  6. J. Polák and M. Klesnil, “The hysteresis loop. 1. A statistical theory,” Fatigue Eng. Mater. Struct., 5, 19–32 (1982).

    Article  Google Scholar 

  7. G. Masing, “Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgene elastische Spannungen,” Wiss. Ver. Siemens-Konzern, 3, 231–239 (1923).

    Article  Google Scholar 

  8. N. N. Afanas’ev, Statistical Theory of Fatigue Strength of Metals [in Russian], AN UkrSSR, Kiev (1953).

    Google Scholar 

  9. J. Polák, M. Klesnil, and J. Helesic, “The hysteresis loop. 2. An analysis of the loop shape,” Fatigue Eng. Mater. Struct., 5, 33–44 (1982).

    Article  Google Scholar 

  10. J. Polák, F. Fardoun, and S. Degallaix, “Analysis of the hysteresis loop in stainless steels. I. Austenitic and ferritic steels,” Mater. Sci. Eng., A297, 144–153 (2001).

    Article  Google Scholar 

  11. J. Polák, F. Fardoun, and S. Degallaix, “Analysis of the hysteresis loop in stainless steels. II. Austeniticferritic duplex steel and the effect of nitrogen,” Mater. Sci. Eng., A297, 154–161 (2001).

    Article  Google Scholar 

  12. M. Šmid, M. Petrenec, J. Polák, et al., “Analysis of effective and internal cyclic stress components in the Inconel superalloy fatigued at elevated temperature,” Adv. Mater. Res., 278, 393–398 (2011).

    Article  Google Scholar 

  13. R. P. Wahi, J. Auerswald, D. Mukherji, et al., “Damage mechanisms of single and polycrystalline nickel base superalloys SC16 and IN738LC under high temperature LCF loading,” Int. J. Fatigue, 19, S89–S94 (1997).

    Article  Google Scholar 

  14. K. Obrtlík, A. Chlupova, M. Petrenec, and J. Polák, “Low cycle fatigue of cast superalloy Inconel 738LC at high temperature,” Key Eng. Mater., 385-387, 581–584 (2008).

    Article  Google Scholar 

  15. K. Obrtlík, M. Petrenec, J. Man, et al., “Isothermal fatigue behavior of cast superalloy Inconel 792-5A at 23 and 900°C,” J. Mater. Sci., 44, 3305–3314 (2009).

    Article  Google Scholar 

  16. J. Polák, “On the role of point defects in fatigue crack initiation,” Mater. Sci. Eng., 92, 71–80 (1987).

    Article  Google Scholar 

Download references

Acknowledgment

The support of the present work by the grants Nos. 13-23652S and P204/11/1453 of the Grant Agency of the Czech Republic is acknowledged.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 27 – 34, September – October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polák, J., Obrtlík, K. & Petrenec, M. Cyclic Plastic Response and Damage in Materials for High Temperature Applications*. Strength Mater 46, 601–607 (2014). https://doi.org/10.1007/s11223-014-9588-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9588-9

Keywords

Navigation