Skip to main content
Log in

Prediction by a Genetic Algorithm of the Fiber–Matrix Interface Damage for Composite Material. Part 2. Study of Shear Damage in Graphite/Epoxy Nanocomposites

  • Published:
Strength of Materials Aims and scope

The objective in this paper is to apply the same genetic model as applied in Part 1 to optimizing the shear damage to the fiber–matrix interface of nanocomposite material graphite epoxy. The results show good agreement between the numerical simulation and the actual behavior of the chosen composite and nanocomposite materials, and these results are similar to those obtained by processing techniques of expanded graphite reinforced polymer nanocomposites made by Asma Yasmine. These results were confirmed by calculating the rate of damage with a genetic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Mokaddem, M. Alami, B. Doumi, and A. Boutaous, “Prediction by a genetic algorithm of the fiber–matrix interface damage for composite material. Part 1. Study of shear damage in two composites T300/914 and PEEK/APC2,” Strength Mater., 46, No. 4, 543–547 (2014).

    Google Scholar 

  2. T. R. Hull and B. K. Kandola, Fire Retardancy of Polymers: New Strategies and Mechanisms, RSC Publishing, Cambridge (2009).

    Google Scholar 

  3. A. R. Horrocks and D. Price, Fire Retardant Materials, Woodhead Publishing (2006).

  4. D. Ratna, Epoxy Composites: Impact Resistance and Flame Retardancy, in: Rapra Review Reports, Vol. 16, No. 5, Report 185 (2005).

  5. K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composite: From Nano- to Macro- Scale, Springer, New York (2005).

    Book  Google Scholar 

  6. M. Salavati-Niasari, F. Davar, and Z. Fereshteh, “Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor,” Chem. Eng. J., 146, No. 3, 498–502 (2009).

    Article  Google Scholar 

  7. M. Salavati-Niasari, M. Dadkhah, and F. Davar, “Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor,” Polyhedron, 28, 3005–3009 (2009).

    Article  Google Scholar 

  8. M. Salavati-Niasari, M. Dadkhah, and F. Davar, “Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium (IV) nitrate as new precursor complex,” Inorg. Chim. Acta, 362, No. 11, 3969–3974 (2011).

    Article  Google Scholar 

  9. M. Salavati-Niasari, M. Bazarganipour, and F. Davar, “Hydrothermal synthesis and characterization of bismuth selenide nanorods via a co-reduction route,” Inorg. Chim. Acta, 365, No. 1, 61–64 (2009).

    Article  Google Scholar 

  10. M. Salavati-Niasari, “Template synthesis and characterization of hexaaza macrocycles containing pyridine iron(II) complex nanoparticles dispersed within nanoreactors of zeolite-Y,” Inorg. Chem. Commun., 12, 359–363 (2009).

    Article  Google Scholar 

  11. M. Salavati-Niasari, M. Shaterian, M. R. Ganjali, and P. Norouzi, “Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N_-bis(salicylidene) phenylene-1,3-diamine)nanocomposites materials (HGNM),” J. Molec. Catalys. A: Chemical, 261, 147–155 (2007).

    Article  Google Scholar 

  12. Asma Yasmine, Jyi-Jiin Luo, Isaac M. Daniel, “Processing of expanded graphite reinforced polymer nanocomposites,” Compos. Sci. Technol., 66, 1179–1186 (2006).

    Google Scholar 

  13. A. Boutaous, B. Peseux, L. Gornet, and A. Belaidi, “A new modeling of plasticity coupled with the damage and identification for carbon fibre composites laminates,” Compos. Struct., 74, No. 1, 1–9 (2006).

    Article  Google Scholar 

  14. A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi, “A computational strategy for the localization and fracture of laminated composites. Part 1. Development of a localization criterion adapted to model damage evolution time-delay,” Strength Mater., 43, No. 5, 519–525 (2011).

    Article  Google Scholar 

  15. A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi, “A computational strategy for the localization and fracture of laminated composites. Part 2. Life prediction by mesoscale modeling for composite structures,” Strength Mater., 43, No. 6, 645–653 (2011).

    Article  Google Scholar 

  16. A. Boutaous, Modélisation du Comportement de l’Endommagement d’un Stratifié Composite au Niveau des Boucles d’Hystérésis, Thèse de Doctorat, USTO-MB, Oran (2007).

  17. A. Mokaddem, M. Alami, and A. Boutaous, “A study by a genetic algorithm for optimizing the arrangement of fibers on damage to the fiber-matrix interface of composite material,” J. Textile Inst., 103, No. 12, 1376–1382 (2012).

    Article  Google Scholar 

  18. A. Mokaddem, M. Alami, L. Temimi, and A. Boutaous, “Study of the effect of heat stress on the damage of the fibre matrix interface of a composite material (T300/914) by means of a genetic algorithm,” FIBRES & TEXTILES in Eastern Europe, 20, 6A (95), 108–111 (2012).

    Google Scholar 

  19. H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Br. J. Appl. Phys., 3, No. 3, 72–79 (1952).

    Article  Google Scholar 

  20. W. Weibull, “A statistical theory of the strength of materials,” Proc. Roy. Swed. Inst. Eng. Res., 151, 1–45 (1939).

    Google Scholar 

  21. G.-A. Lebrun, Thermomechanical Behavior and Lifetime of Ceramic Matrix Composites: Theory and Experiment, Ph.D. Thesis, University of Bordeaux I (1996).

  22. N. Lissart, “Damage and failure in ceramic matrix minicomposites: experimental study and model,” Acta Mater., 45, No. 3, 1025–1044 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mokaddem.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 130 – 135, July – August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokaddem, A., Alami, M., Ziani, N. et al. Prediction by a Genetic Algorithm of the Fiber–Matrix Interface Damage for Composite Material. Part 2. Study of Shear Damage in Graphite/Epoxy Nanocomposites. Strength Mater 46, 548–552 (2014). https://doi.org/10.1007/s11223-014-9581-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9581-3

Keywords

Navigation