Skip to main content
Log in

Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint

  • Published:
Strength of Materials Aims and scope

Finite element analysis has been carried out to obtain the interfacial stresses in a single lap joint using a special 6-node isoparametric element for adhesive layer. The analysis results are found to be in good agreement with the closed-form solution of Goland and Reissner. The peak normal and shear stresses found in the adhesive layer at the edges of the joint are due to stress singularity. The bond strength of the single-lap joint is estimated considering one of the stress fracture criteria known as the point stress criterion. Bond strength estimates are found to be reasonably in good agreement with existing test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Tong and G. P. Steven, Analysis and Design of Structural Bonded Joints, Kluwer Academic Publishers, Boston (1999).

    Book  Google Scholar 

  2. W. C. Carpenter, “Goland and Reissner were correct,” J. Strain Anal., 24, No. 3, 185–187 (1989).

    Article  Google Scholar 

  3. G. Li and P. Lee-Sullivan, “Finite element and experimental studies on single-lap balanced joints in tension,” Int. J. Adhes. Adhesiv., 21, No. 3, 211–220 (2001).

    Article  Google Scholar 

  4. M. Y. Tsai and J. Morton, “An experimental investigation of nonlinear deformations in single-lap joints,” Mech. Mater., 20, 183–194 (1995).

    Article  Google Scholar 

  5. Q. Luo and L. Tong, “Analytical solutions for nonlinear analysis of composite single-lap adhesive joints,” Int. J. Adhes. Adhesiv., 29, No. 2, 144–154 (2009).

    Article  Google Scholar 

  6. L. D. R. Grant, R. D. Adams, and L. F. M. da Silva, “Experimental and numerical analysis of single-lap joints for the automotive industry,” Int. J. Adhes. Adhesiv., 29, No. 4, 405–413 (2009).

    Article  Google Scholar 

  7. T. R. Guess, R. E. Allred, and F. P. Gerstle, Jr., “Comparison of lap shear test specimens,” J. Test. Eval., 5, No. 3, 84–93 (1977).

    Google Scholar 

  8. P. Chalkley and F. Rose, “Stress analysis of double-strap bonded joints using a variational method,” Int. J. Adhes. Adhesiv., 21, No. 3, 241–247 (2001).

    Article  Google Scholar 

  9. H. Osnes and D. McGeorge, “Experimental and analytical strength analysis of double-lap joints for marine applications,” Composites: Part B, 40, 29–40 (2009).

    Article  Google Scholar 

  10. A. Gacoin, P. Lestriez, J. Assih, et al., “Comparison between experimental and numerical study of the adhesively bonded scarf joint and double scarf joint: Influence of internal singularity created by geometry of the double scarf joint on the damage evolution,” Int. J. Adhes. Adhesiv., 29, No. 5, 572–579 (2009).

    Article  Google Scholar 

  11. A. F. Avila and P. de O. Bueno, “An experimental and numerical study on adhesive joints for composites,” Compos. Struct., 64, 531–537 (2004).

  12. G. C. McGrath, “The performance of adhesive joints-a UK initiative,” Int. J. Adhes. Adhesiv., 17, No. 4, 339–343 (1997).

    Article  Google Scholar 

  13. Naveen Rastogi, B. P. Deepak and S. R. Soni, “Stress analysis codes for bonded joints in composite structures,” AIAA-97-1341 (1997), pp. 2772–2782.

  14. A. Öchsner and J. Gegner, “Application of the finite element method in the tensile-shear test of adhesive technology,” Int. J. Adhes. Adhesiv., 21, No. 4, 349–353 (2001).

    Article  Google Scholar 

  15. L. F. M. da Silva and R. D. Adams, “Techniques to reduce the peel stresses in adhesive joints with composites,” Int. J. Adhes. Adhesiv., 27, No. 3, 227–235 (2007).

    Article  Google Scholar 

  16. G. P. Zou, K. Shahin, and F. Taheri, “An analytical solution for the analysis of symmetric composite adhesively bonded joints,” Compos. Struct., 65, 499–510 (2004).

    Article  Google Scholar 

  17. D. P. Romilly and R. J. Clark, “Elastic analysis of hybrid bonded joints and bonded composite repairs,” Compos. Struct., 82, 563–576 (2008).

    Article  Google Scholar 

  18. A. A. Taib, R. Boukhili, S. Achiou, and H. Boukehili, “Bonded joints with composite adherends. Part II: Finite element analysis of joggle lap joints,” Int. J. Adhes. Adhesiv., 26, No. 4, 237–248 (2006).

    Article  Google Scholar 

  19. D. Castagnetti and E. Dragoni, “Standard finite element techniques for efficient stress analysis of adhesive joints,” Int. J. Adhes. Adhesiv., 29, No. 2, 125–135 (2009).

    Article  Google Scholar 

  20. L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, and J. K. Spelt, “Analytical models of adhesively bonded joints – Part I: Literature survey,” Int. J. Adhes. Adhesiv., 29, No. 3, 319–330 (2009).

    Article  Google Scholar 

  21. M. Goland and E. Reissner, “The stresses in cemented joints,” J. Appl. Mech., 11, A17–A27 (1944).

    Google Scholar 

  22. F. Erdogan and M. Ratwani, “Stress distribution in bonded joints,” J. Compos. Mater., 5, 378–393 (1971).

    Article  Google Scholar 

  23. L. J. Hart-Smith, Adhesive-Bonded Scarf and Stepped-Lap Joints, NASA CR-112237 (January 1973).

  24. L. J. Hart-Smith, Analysis and design of advanced composite bonded joints, NASA CR-2218 (August 1974).

  25. D. J. Chang and R. Muki, “Stress distribution in a lap joint under tension-shear,” Int. J. Solids Struct., 10, 503–517 (1974).

    Article  Google Scholar 

  26. M. N. Reddy and P. K. Sinha, “Stresses in adhesive-bonded joints for composites,” Fibre Sci. Technol., 8, 33–47 (1975).

    Article  Google Scholar 

  27. T. S. Ramamurthy and A. K. Rao, “Shaping of adherends in bonded joints,” Int. J. Mech. Sci., 20, 721–727 (1978).

    Article  Google Scholar 

  28. U. Yuceoglu and D. P. Updike, “Stress analysis of bonded plates and joints,” J. Eng. Mech., 106, 37–56 (1980).

    Google Scholar 

  29. R. M. Barker and F. Hatt, “Analysis of bonded joints in vehicular structures,” AIAA J., 11, 1650–1654 (1973).

    Article  Google Scholar 

  30. K. G. Muthurajan, K. Sankaranarayana Samy, S. B. Tiwari, and B. Nageswara Rao, “Finite element modeling of adhesively bonded joints,” Trends Appl. Sci. Res., 1, No. 1, 25–40 (2006).

    Article  Google Scholar 

  31. O. C. Zienkiewicz, The Finite Element Method in Engineering Sciences, McGraw Hill, London (1971).

    Google Scholar 

  32. J. A. Harris and R. D. Adams, “Strength prediction of bonded single lap joints by non-linear finite element methods,” Int. J. Adhes. Adhesiv., 4, No. 2, 65–78 (1984).

    Article  Google Scholar 

  33. R. D. Adams, “The mechanics of bonded joints,” in: Structural Adhesives in Engineering, ImechE Conference Publications, Suffolk (1986), pp. 17–24.

  34. P. K. Mallick (Ed.), Composites Engineering Handbook, Marcel Dekker, Inc. (1997).

  35. C. H. Wang and P. Chalkley, “Plastic yielding of a film adhesive under multiaxial stresses,” Int. J. Adhes. Adhesiv., 20, No. 2, 155–164 (2000).

    Article  Google Scholar 

  36. G. D. Dean and L. Crocker, Comparison of the Measured and Predicted Deformation of an Adhesively Bonded Lap-Joint Specimen, NPL Report CMMT (A) 293 (2000).

  37. A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Technol., 99, No. 1, 2–15 (1977).

    Article  Google Scholar 

  38. H. L. Groth, “A method to predict fracture in an adhesively bonded joint,” Int. J. Adhes. Adhesiv., 5, No. 1, 19–22 (1985).

    Article  Google Scholar 

  39. H. L. Groth, “Stress singularities and fracture at interface corners in bonded joints,” Int. J. Adhes. Adhesiv., 8, No. 2, 107–113 (1988).

    Article  Google Scholar 

  40. G. Fernlund and J. K. Spelt, “Failure load prediction of structural adhesive: Part 1: Analytical method,” Int. J. Adhes. Adhesiv., 11, No. 4, 213–220 (1991).

    Article  Google Scholar 

  41. G. Fernlund and J. K. Spelt, “Failure load prediction of structural adhesive: Part 2: Experimental results,” Int. J. Adhes. Adhesiv., 11, No. 4, 221–227 (1991).

    Article  Google Scholar 

  42. G. Fernlund, M. Papini, D. McCammond, and J. K. Spelt, “Fracture load predictions for adhesive joints,” Compos. Sci. Technol., 51, 587–600 (1994).

    Article  Google Scholar 

  43. A. J. Curley, H. Hadavinia, A. J. Kinloch, and A. C. Taylor, “Predicting the service-life of adhesivelybonded joints,” Int. J. Fract., 103, 41–69 (2000).

    Article  Google Scholar 

  44. W. R. Broughton, L. E. Crocker, and J. M. Urquhart, Strength of Adhesive Joints: a Parametric Study, NPL Report MATC (A) 27 (2001).

  45. J. Whitney and R. Nuismer, “Stress fracture criteria for laminated composites containing stress concentrations,” J. Compos. Mater., 8, 253–265 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nageswara Rao.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 92 – 101, July – August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajikumar, K.S., Kumar, N.A. & Rao, B.N. Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint. Strength Mater 46, 518–525 (2014). https://doi.org/10.1007/s11223-014-9577-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9577-z

Keywords

Navigation