Nanomechanical Properties of TiN/TiC Multilayer Coatings

The structure, composition and mechanical properties of TiN/TiC multilayer coatings are investigated. All coatings were deposited on H13 hot work tool steel by the pulsed-DC plasma assisted chemical vapor deposition. Nanoindentation and nanoscratch tests were carried out by the atomic force microscopy. The objective is to determine mechanical properties such as hardness, elastic modulus, surface roughness and friction coefficient. The grazing incidence X-ray diffraction and the field emission scanning electron microscopy were also used to study the crystalline structure of coatings. Increasing the number of layers in coatings increased the elastic modulus and the hardness. Overall superior mechanical properties such as high hardness, the elastic modulus and the scratch resistance rendered to multilayer coatings with 10 layers. This type of coating can be suitable for wear resistance applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    H. Liepack, K. Bartsch, W. Brückner, A. Leonhardt, “Mechanical behavior of PACVD TiC–amorphous carbon composite layers,” Surf. Coat. Technol., 183, 69–73 (2004).

    Article  Google Scholar 

  2. 2.

    N. Kumar, R. Krishnan, D. Dinesh Kumar, et al., “Tribological properties of nanostructured TiC coatings deposited on steel and silicon substrates using pulse laser deposition technique,” TribologyMater. Surf. Interfaces, 5, 1–9 (2011).

    Article  Google Scholar 

  3. 3.

    A. Shanaghi, A. Sabour Rouhaghdam, S. Ahangarani, et al., “Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD,” Appl. Surf. Sci., 258, 3051–3057 (2012).

    Article  Google Scholar 

  4. 4.

    P. Panjan, M. Ekada, D. Kek-Merl, et al., “Deposition and characterization of Ti0.5Al0.5N/CrN multilayer coating sputtered at low temperature,” MTAEC9, 37 (3-4), 123–127 (2003).

    Google Scholar 

  5. 5.

    J.-W. Lim, J.-J. Lee, H. Ahn, and K.-T. Rie, “Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition,” Surf. Coat. Technol., 174-175, 720–724 (2003).

    Article  Google Scholar 

  6. 6.

    D. Kim, Y. Cho, M. Lee, et al, “Properties of TiN–TiC coatings using plasma-assisted chemical vapor deposition,” Surf. Coat. Technol., 116-119, 906–910 (1999).

    Article  Google Scholar 

  7. 7.

    Y. Zhao, G. Lin, J. Xiao, et al., “TiN/TiC multilayer films deposited by pulse biased arc ion plating,” Vacuum, 85, 1–4 (2010).

    Article  Google Scholar 

  8. 8.

    A. Shanaghi, A. Sabour Rouhaghdam, S. Ahangarani, and P. K. Chu, “Effect of plasma CVD operating temperature on nanomechanical properties of TiC nano-structured coating investigated by atomic force microscopy,” Mater. Res. Bull., 47, 2200–2205 (2012).

    Article  Google Scholar 

  9. 9.

    H. L. Wang, J. L. He, and M. H. Hon, “Sliding wear resistance of TiCN coatings on tool steel made by plasma-enhanced chemical vapor deposition,” Wear, 169, 195–200 (1993).

    Article  Google Scholar 

  10. 10.

    Y. Iwai, T. Miyajima, A. Mizuno, et al., “Micro-slurry-jet erosion (MSE) testing of CVD TiC/TiN and TiC coatings,” Wear, 267, 264–269 (2009).

    Article  Google Scholar 

  11. 11.

    M. Takahashi and S. Shimada, “Preparation of composite and compositionally graded TiC–TiN films by liquid injection plasma-enhanced CVD,” Solid State Ionics, 172, 249–252 (2004).

    Article  Google Scholar 

  12. 12.

    S. Ma, Y. Li, and K. Xu, “The composite of nitrided steel of H13 and TiN coatings by plasma duplex treatment and the effect of pre-nitriding,” Surf. Coat. Technol., 137, 116–121 (2001).

    Article  Google Scholar 

  13. 13.

    K. Holmberg, A. Matthews, and H. Ronkainen, “Coatings tribology-contact mechanisms and surface design,” Tribol. Int., 31, 107–120 (1998).

    Article  Google Scholar 

  14. 14.

    A. Devia, V. Benavides, E. Restrepo, et al., “Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques,” Vacuum, 81, 378–384 (2006).

    Article  Google Scholar 

  15. 15.

    D. E. Wolfe, J. Singh, and K. Narasimhan, “Synthesis and characterization of multilayered TiC/TiB2 coatings deposited by ion beam assisted, electron beam physical vapor deposition (EB-PVD),” Surf. Coat. Technol., 165, 8–25 (2003).

    Article  Google Scholar 

  16. 16.

    K. T. Rie, A. Gebauer, J. Wohle, et al., “Synthesis of TiN/TiCN/TiC layer systems on steel and cermet substrates by PACVD,” Surf. Coat. Technol., 74-75, 375–381 (1995).

    Article  Google Scholar 

  17. 17.

    C. Jarms, H. R. Stock, H. Berndt, et al., “Influence of the PACVD process parameters on the properties of titanium carbide thin films,” Surf. Coat.Technol., 98, 1547–1552 (1998).

    Article  Google Scholar 

  18. 18.

    Y. T. Pei, D. Galvan, J. Th. M. De Hosson, and C. Strondl, “Advanced TiC/a-C:H nanocomposite coatings deposited by magnetron sputtering,” J. Europ. Ceram. Soc., 26, 565–570 (2006).

    Article  Google Scholar 

  19. 19.

    C. Liu, K. Liu, H. Yan, et al., “Mechanical properties of TiN/NbN multilayered films prepared by PVD coating,” Adv. Ceram. Sci. Eng. (ACSE), 2, 16–22 (2013).

    Google Scholar 

  20. 20.

    C. Morant, P. Prieto, A. Forn, et al., “Hardness enchancement by CN–TiCN–TiN multilayer films,” Surf. Coat. Technol., 180-181, 512–518 (2004).

    Article  Google Scholar 

  21. 21.

    S. H. Kim, Y. J. Baik, and D. Kwon, “Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings,” Surf. Coat. Technol., 187, 47–53 (2004).

    Article  Google Scholar 

  22. 22.

    K. H. T. Raman, M. S. R. N. Kiran, U. Ramamurty, and G. Mohan Rao, “Structure and mechanical properties of Ti–C films deposited using combination of pulsed DC and normal DC magnetron co-sputtering,” Appl. Surf. Sci., 258, 8629–8635 (2012).

    Article  Google Scholar 

  23. 23.

    W. C. Oliver and G. M. Phar, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 1564–1583 (1992).

    Article  Google Scholar 

  24. 24.

    S. H. Kim, H. Park, K. H. Lee, et al., “Structure and mechanical properties of titanium nitride thin films grown by reactive pulsed laser deposition,” Process. Res., 10, 49–53 (2009).

    Google Scholar 

  25. 25.

    J. C. Caicedo, C. Amaya, L. Yate, et al., “TiCN/TiN/CN multilayer coatings with enhanced mechanical properties,” Appl. Surf. Sci., 256, 5898–5904 (2010).

    Article  Google Scholar 

  26. 26.

    K. Holmberg, H. Ronkainen, A. Laukkanen, et al., “Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture behavior,” Wear, 267, 2142–2156 (2009).

    Article  Google Scholar 

  27. 27.

    J. Ding, Y. Meng, and S. Wen, “Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation,” Thin Solid Films, 371, 178–182 (2000).

    Article  Google Scholar 

  28. 28.

    A. J. McGinnis, T. R. Watkins, and K. Jagannadham, “Residual stresses in a multilayer system of coatings,” Int. Centre Diffr. Data, 41, 443–454 (1999).

    Google Scholar 

  29. 29.

    S. Jian, G. Chen, and T. Lin, “Berkovich nanoindentation on AlN thin films,” Nanoscale Res. Lett., 5, 935–940 (2010).

    Article  Google Scholar 

  30. 30.

    J. M. Lackner, L. Major, and M. Kot, “Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates,” Bull. Polish Acad. Sci. (Tech. Sci.), 59, 343–355 (2011).

    Google Scholar 

  31. 31.

    Y. T. Pei, D. Galvan, J. Th. M. de Hosson, and A. Cavaleiro, “Nanostructured TiC/a-C coatings for low friction and wear resistant applications,” Surf. Coat. Technol., 198, 44–50 (2005).

    Article  Google Scholar 

  32. 32.

    L. Ipaz, A. Esguerra-Arce, W. Aperador, et al., “Nanofriction study using atomic force microscopy (AFM) of multilayers based in titanium, chromium and aluminum,” in: A. Mendez-Vilas (Ed.), Current Microscopy Contributions to Advances Science and Technology (2012), pp. 1395–1403.

  33. 33.

    D. G. Liu, J. P. Tu, C. D. Gu, et al., “Tribological and mechanical behaviors of TiN/CNx multilayer films deposited by magnetron sputtering,” Thin Solid Films, 519, 4842–4848 (2011).

    Article  Google Scholar 

  34. 34.

    A. A. C. Recco, C. C. Vifara, A. Sinator, and A. P. Tschiptschin, “Energy dissipation in depthsensing indentation as a characteristic of the nanoscratch behavior of coatings,” Wear, 267, 1146–1152 (2009).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Azadi.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 149 – 161, January – February, 2014.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Azadi, M., Rouhaghdam, A.S. Nanomechanical Properties of TiN/TiC Multilayer Coatings. Strength Mater 46, 121–131 (2014).

Download citation


  • TiN/TiC coatings
  • plasma-assisted chemical vapor deposition
  • atomic force microscopy
  • nanoindentation
  • nanoscratch