Skip to main content
Log in

A Study of the Creep Damageability of Tubular Solid Oxide Fuel Cell

  • Published:
Strength of Materials Aims and scope

The creep damageability and long-term strength of a tubular solid oxide fuel cell are studied. The method for the solution of the initial boundary value problem of creep and damageability is based on the joint application of the R-function and the Runge-Kutta–Merson methods. An example of the calculation of the creep and long-term strength of a Siemens-Westinghouse fuel cell is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Bieberle-Hütter, D. Beckel, A. Infortuna, et al., “A micro-solid oxide fuel cell system as battery replacement,” J. Power Sources, 177, 123–130 (2008).

    Article  Google Scholar 

  2. N. Hotz, S. M. Senn, and D. Poulikakos, “Exergy analysis of a solid oxide fuel cell micropowerplant,” J. Power Sources, 158, 333–347 (2006).

    Article  Google Scholar 

  3. J. H. Joo and G. M. Choi, “Micro-solid oxide fuel cell using thick-film ceria,” Solid State Ionics, 180, 839–842 (2009).

    Article  Google Scholar 

  4. J. F. Vente, S. McIntosh, W. G. Haije, and H. J. M. Bouwmeester, “Properties and performance of BaxSr1-x Co0.8Fe0.2O3-δ materials for oxygen transport membranes,” J. Solid State Electrochem., 10, 581–588 (2006).

    Article  Google Scholar 

  5. K. Fisher and J. R. Seume, “Impact of the temperature profile on thermal stress in a tubular solid oxide fuel cell,” J. Fuel Cell Sci. Technol., 6, 011017-1–011017-9 (2009).

    Google Scholar 

  6. J. Crank, The Mathematics of Diffusion, Second Edition, Oxford University Press (1975).

  7. A. A. Zolochevskii, A. N. Sklepus, and S. N. Sklepus, Nonlinear Mechanics of Deformable Solids [in Russian], Biznes Investor Grupp, Kharkov (2011).

  8. V. I. Krylov, V. V. Bobkov, and P. I. Monastyrnyi, Computing Methods [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  9. V. L. Rvachev, Theory of R-Functions and Some of Its Applications [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  10. A. Nakajo, C. Stiller, G. Härkegård, and O. Bolland, “Modeling of thermal stresses and probability of survival of tubular SOFC,” J. Power Sources, 158, 287–294 (2006).

    Article  Google Scholar 

  11. F. L. Lowrie and R. D. Rawlings, “Room and high temperature failure mechanisms in solid oxide fuel cell electrolytes,” J. Eur. Ceram. Soc., 20, 751–760 (2000).

    Article  Google Scholar 

  12. E. Lara-Curzio, “Durability and reliability of SOFC materials and components,” in: Proc. of 7th Annual SECA Workshop and Peer Review (Sept. 12–14, 2006, Philadelphia).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sklepus.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 63 – 71, January – February, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklepus, S.N., Zolochevskii, A.A. A Study of the Creep Damageability of Tubular Solid Oxide Fuel Cell. Strength Mater 46, 49–56 (2014). https://doi.org/10.1007/s11223-014-9514-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9514-1

Keywords

Navigation