Skip to main content
Log in

Microstructural Features and Mechanical Properties of Artificially Aged AA2024

  • Published:
Strength of Materials Aims and scope

Microstructural features and mechanical properties of Al–Cu–Mg alloy (AA2024) were examined after aging the alloy between 105–195°C for various durations. One set of the specimens was aged at 105, 135, 165, and 195°C for 2 h, whereas the aging of other set of specimens at these temperatures was performed for 3.5, 3, 2.5, and 2 h, respectively. X-ray diffraction and scanning electron microscopy results indicated the formation of S- (Al2CuMg) and Θ- (Al2Cu) phase precipitates whose density and size changed with aging time and the temperatures. Anomalous variations in yield strength, ultimate tensile strength, plastic elongation, elastic modulus and hardness were observed with either changing the aging temperature, or the time. However, the specimens aged at 135 and 195°C for 2 h displayed the maximum strength and hardness along with a slight decrease in their plasticity as compared to those aged at other temperatures with various durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Wilm, “Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen,” Metallurgie, 8, 225–227 (1911).

    Google Scholar 

  2. A. Guinier, “Structure of age-hardened aluminium-copper alloys,” Nature, 142, 569–570 (1938).

    Article  Google Scholar 

  3. G. D. Preston, “Structure of age-hardened aluminium-copper alloys,” Nature, 142, 570 (1938).

    Article  Google Scholar 

  4. Y. A. Bagaryatsky, “Structural changes on aging Al–Cu–Mg alloys,” Dokl. AN SSSR, 87, 397–401 (1952).

    Google Scholar 

  5. J. M. Silcock, “The structural ageing characteristics of Al–Cu–Mg alloys with copper:magnesium weight ratios 7:1 and 2.2:1,” J. Inst. Met., 89, 203–210 (1960-61).

    Google Scholar 

  6. H. Perlitz and A. Westgren, “The crystal structure of AlCuMg,” Ark. Kemi. Mineral. Geol., 16B, 1–5 (1943).

    Google Scholar 

  7. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London (1976).

    Google Scholar 

  8. A. K. Gupta, P. Gaunt, and M. C. Chaturvedi, “The crystallography and morphology of the S′-phase precipitate in an Al(CuMg) alloy,” Phil. Mag. A, 55, 375–387 (1987).

    Article  Google Scholar 

  9. S. P. Ringer, K. Hono, I. J. Polmear, and T. Sakurai, “Precipitation processes during the early stages of ageing in Al–Cu–Mg alloys,” Appl. Surf. Sci., 94/95, 253–260 (1996).

    Article  Google Scholar 

  10. R. Kilaas and V. Radmilovic, “Structure determination and structure refinement of Al2CuMg precipitates by quantitative high-resolution electron microscopy,” Ultramicroscopy, 88, No. 1, 63–72 (2001).

    Article  Google Scholar 

  11. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, “Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds,” Acta Mater., 53, No. 8, 2447–2458 (2005).

    Article  Google Scholar 

  12. S. Abis, M. Massazza, P. Mengucci, and G. Riontino, “Early ageing mechanisms in a high-copper AlCuMg alloy,” Scr. Mater., 45, No. 6, 685– 691 (2001).

    Article  Google Scholar 

  13. H.-C. Shih, N. J. Ho, and J. C. Huang, “Kinetic study of precipitation behavior in Al–Cu–Mg and 2024 aluminum alloys,” Metall. Mater. Trans., 27A, 2479–2494 (1996).

    Article  Google Scholar 

  14. S. C. Wang and M. J. Starink, “Review of precipitation in Al–Cu–Mg(Li) alloys,” Int. Mater. Rev., 50, 193–215 (2005).

    Article  Google Scholar 

  15. V. Radmilovic, R. Kilaas, U. Dahmen, and G. J. Shiflet, “Structure and morphology of S-phase precipitates in aluminum,” Acta Mater., 47, 3987– 3997 (1999).

    Article  Google Scholar 

  16. Z. Feng, Y. Yang, B. Huang, et al., “Precipitation process along dislocations in Al–Cu–Mg alloy during artificial aging,” Mater. Sci. Eng. A, 528, Issue 2, 706–714 (2010).

    Article  Google Scholar 

  17. T. S. Parel, S. C. Wang, and M. J. Starink, “Hardening of an Al–Cu–Mg alloy containing type I and II S phase precipitates,” Mater. Des., 31, S2–S5 (2010).

    Article  Google Scholar 

  18. N. Afify, A. Gaber, A. M. Abousehly, and Y. M. Abou Deif, “Precipitation kinetics in supersaturated Al–2.0 at% Cu–1.0 at% Mg alloy,” Mater. Trans., 51, No. 2, 317–320 (2010).

    Article  Google Scholar 

  19. S. C. Wang, M. J. Starink, and N. Gao, “Precipitation hardening in Al–Cu– Mg alloys,” Scr. Mater., 54, 287–291 (2006).

    Article  Google Scholar 

  20. S. C. Wang and M. J. Starink, “Two types of S phase precipitates in Al–Cu–Mg alloys,” Acta Mater., 55, No. 3, 933–941 (2007).

    Article  Google Scholar 

  21. J. M. Palmerin, Héctor J. Dorantes Rosales, Victor M. López Hirata, et al., “Hardening behavior in aged Al–4%Cu–0.3%Mg alloys with 0.5 and 2%Ag additions,” Mater. Trans., 50, No. 12, 2785–2789 (2009).

    Article  Google Scholar 

  22. S. N. Gurugubelli, “The effect of ageing on impact toughness and microstructure of 2024 Al–Cu–Mg alloy,” World Acad. Sci., Eng. Technol., 62, 648–650 (2012).

    Google Scholar 

  23. M. K. Abbass, “Effect of aging time on the mechanical properties of friction stir spot welding of Al-alloy (AA2024),” Int. J. Eng. Res. Appl., 2, 1366–1374 (2012).

    Google Scholar 

  24. D. A. P. Reis, A. A. Couto, N. I. Domingues, Jr., et al., “Effect of artificial aging on the mechanical properties of an aerospace aluminum alloy 2024,” Defect Diff. Forum, 326–328, 193–198 (2012).

    Article  Google Scholar 

  25. J. F. Li, Z. Ziqiao, J. Na, and T. Chengyu, “Localized corrosion mechanism of 2xxx-series Al alloy containing S(Al2CuMg) and θ′(Al2Cu) precipitates in 4.0% NaCl solution at pH 6.1,” Mater. Chem. Phys., 91, 325–329 (2005).

    Article  Google Scholar 

  26. M. Jafari, M. H. Enayati, M. H. Abbasi, and F. Karimzadeh, “Thermal stability and structural changes during heat treatment of nanostructured Al2024 alloy,” J. Alloys Comp., 478, 260–264 (2009).

    Article  Google Scholar 

  27. S. M. R. Mousavi Abarghouie and S. M. Seyed Reihani, “Aging behavior of a 2024 Al alloy-SiCp composite,” Mater. Des., 31, No. 5, 2368–2374 (2010).

    Article  Google Scholar 

  28. Z. Liu, P. H. Chong, A. N. Butt, et al., “Corrosion mechanism of laser-melted AA2014 and AA2024 alloys,” Appl. Surf. Sci., 247, 294–299 (2005).

    Article  Google Scholar 

  29. M. Iannuzzi and G. S. Frankel, “Inhibition of aluminum alloy 2024 corrosion by vanadates: an in situ atomic force microscopy scratching investigation,” Corrosion, 63, 672–688 (2007).

    Article  Google Scholar 

  30. R. G. Buchheit, R. P. Grant, P. F. Hlava, et al., “Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3,” J. Electrochem. Soc., 144, No. 8, 2621–2628 (1997).

    Article  Google Scholar 

  31. Z. Huda, N. I. Taib, and T. Zaharine, “Characterization of 2024-T3: an aerospace aluminum alloy,” Mater. Chem. Phys., 113, 515–517 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Rana M. Ayub and Mr. Sajjad Ahmad are acknowledged for their help during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Afzal.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 69 – 81, November – December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, N., Shah, T. & Ahmad, R. Microstructural Features and Mechanical Properties of Artificially Aged AA2024. Strength Mater 45, 684–692 (2013). https://doi.org/10.1007/s11223-013-9504-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-013-9504-8

Keywords

Navigation