Skip to main content

Advertisement

Log in

Experimental investigation on microstructure and mechanical properties of direct squeeze cast Al–13%Si alloy

  • Published:
Strength of Materials Aims and scope

Squeeze casting is characterized by an applied pressure during solidification. It activates different physical processes which have metallurgical repercussions on the cast alloys. An experimental study showed the effect of the pressure levels on the microstructure and the mechanical behavior of an Al–13%Si alloy. The results showed that the applied pressure ranging from 0.1 to 100 MPa refined the microstructure, improved the tensile properties and increased the hardness Vickers in the specimen centers. Beyond 100 MPa until 150 MPa, the alloy has undergone a severe deformation in the presence of the high temperature, which generated a coarse micro-structure. Consequently, the tensile properties and the hardness decreased. The scanning electron microscopy fractographs show that the fracture mode of the squeeze cast specimens is more ductile up to 100 MPa pressure. This implies that the pressure is optimized to avoid degradation and segregation of the material during the elaboration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Schmidt, J. Bast, M. Aitsuradze, and L. Arnberg, “Hollow castings produced by interrupted low pressure die casting,” Int. J. Cast. Met. Res., 23, 1–6 (2010).

    Article  CAS  Google Scholar 

  2. Kh. A. Ragab, A. M. Samuel, A. M. A. Al-Ahmari, et al., “Influence of fluidized sand bed heat treatment on the performance of AlSi cast alloys,” Mater. Des., 32, 1177–1193 (2011).

    Article  CAS  Google Scholar 

  3. C. M. Cepeda-Jiménez, J. M. Garcia-Infanta, A. P. Zhilyaev, et al., “Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion,” J. Alloys Compd., 509, Issue 3, 636–643 (2011).

    Article  Google Scholar 

  4. Y. Zedana, F. H. Samuela, A. M. Samuela, and H. W. Doty, “Effects of Fe intermetallics on the machinability of heat-treated Al–(7–11)% Si alloys,” J. Mater. Process. Technol., 210, Issue 2, 245–257 (2010).

    Article  Google Scholar 

  5. S. Nafisi and R. Ghomashchi, “Boron-based refiners: Advantages in semi-solid-metal casting of Al–Si alloys,” Mater. Sci. Eng. A, 452-453, 437–444 (2007).

    Google Scholar 

  6. N. A. Belov, D. G. Eskin, and N. N. Avxentieva, “Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys,” Acta Mater., 53, 4709–4722 (2005).

    Article  CAS  Google Scholar 

  7. R. Ashiri, B. Niroumand, F. Karimzadeh, et al., “Effect of casting process on microstructure and tribological behavior of LM13 alloy,” J. Alloys Compd., 475, Issue 1-2, 321–327 (2009).

    Article  CAS  Google Scholar 

  8. Rodrigo González, Dora I. Martinez, J. Alejandro González, et al., “Experimental investigation for fatigue strength of a cast aluminium alloy,” Int. J. Fatigue, 33, Issue 2, 273–278 (2011).

    Article  Google Scholar 

  9. Choong Do Lee, “Variability in the tensile properties of squeeze-cast Al–Si– Cu–Mg alloy,” Mater. Sci. Eng. A, 488, 296–302 (2008).

    Article  Google Scholar 

  10. Choong Do Lee, “Effect of damage evolution of Si particles on the variability of the tensile ductility of squeeze-cast Al–10%Si–2%Cu–0.4%Mg alloy,” Mater. Sci. Eng. A, 527, 3144–3150 (2010).

    Article  Google Scholar 

  11. X. Meng-Burany, T. A. Perry, A. K. Sachdev, and A. T. Alpas, “Subsurface sliding wear damage characterization in Al–Si alloys using focused ion beam and cross-sectional TEM techniques,” Wear, 270, 152–162 (2011).

    Article  CAS  Google Scholar 

  12. S. W. Kim, D. Y. Kim, W. G. Kim, and K. D. Woo, “The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy,” Mater. Sci. Eng. A, 304-306, 721–726 (2001).

    Google Scholar 

  13. S. W. Youn, C. G. Kang, and P. K. Seo, “Thermal fluid/solidification analysis of automobile part by horizontal squeeze casting process and experimental evaluation,” J. Mater. Process. Technol., 146, 294–302 (2004).

    Article  Google Scholar 

  14. Crystopher Cardoso De Brito, Fabricio Dias Magalhães, André Luiz de Morais Costa, and Cláudio Alves Siqueira, “Microstructural analysis and tensile properties of squeeze cast Al–7%Mg alloy,” Mater. Sci. Forum, 643, 119–123 (2010).

    Article  CAS  Google Scholar 

  15. Ming Zhou, Henry Hu, Naiyi Li, and Jason Lo, “Microstructure and tensile properties of squeeze cast magnesium alloy AM50,” J. Mater. Eng. Perform., 14, No. 4, 539–545 (2005).

    Article  CAS  Google Scholar 

  16. M. T. Abou El-khair, “Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys,” Mater. Lett., 59, 894–900 (2005).

    Article  CAS  Google Scholar 

  17. Yanfei Bai and Haidong Zhao, “Tensile properties and fracture behavior of partial squeeze added slow shot die-cast A356 aluminum alloy,” Mater. Des., 31, Issue 9, 4237–4243 (2010).

    Article  CAS  Google Scholar 

  18. S. Murali and M. S. Yong, “Liquid forging of thin Al–Si structures,” J. Mater. Process. Technol., 210, 1276–1281 (2010).

    Article  CAS  Google Scholar 

  19. A. Maleki, B. Niroumand, and A. Shafyei, “Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy,” Mater. Sci. Eng. A, 428, Issue 1-2, 135–140 (2006).

    Google Scholar 

  20. A. Maleki, A. Shafyei, and B. Niroumand, “Effects of squeeze casting parameters on the microstructure of LM13 alloy,” J. Mater. Process. Technol., 209, Issue 8, 3790–3797 (2009).

    Article  CAS  Google Scholar 

  21. C. H. Fan, Z. H. Chen, W. Q. He, et al., “Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al–Zn–Mg–Cu alloy,” J. Alloys Compd., 504, Issue 2, L42–L45 (2010).

    Article  CAS  Google Scholar 

  22. ASM Handbook, Vol. 9: Metallography and Microstructures, Materials Park, OH (1986), pp. 334–435.

  23. A. Boschetto, G. Costanza, F. Quadrini, and M. E. Tata, “Cooling rate inference in aluminum alloy squeeze casting,” Mater. Lett., 61, Issues 14–15, 2969–2972 (2007).

    Article  CAS  Google Scholar 

  24. Ming Zhang, Wei-wen Zhang, Hai-dong Zhao, et al., “Effect of pressure on microstructures and mechanical properties of Al–Cu-based alloy prepared by squeeze casting,” Trans. Nonferrous Met. Soc. China, 17, No. 3, 496–501 (2007).

    Article  Google Scholar 

  25. M. R. Ghomashchi and A. Vikhrov, Squeeze casting: an overview, J. Mater. Process. Technol., 101, Issues 1–3, 1–9 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Souissi.

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 156 – 167, May – June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souissi, S., Amar, M.B. & Bradai, C. Experimental investigation on microstructure and mechanical properties of direct squeeze cast Al–13%Si alloy. Strength Mater 44, 337–345 (2012). https://doi.org/10.1007/s11223-012-9387-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-012-9387-0

Keywords

Navigation