Skip to main content
Log in

Progressive failure analysis of glass/epoxy composites at low temperatures

  • Published:
Strength of Materials Aims and scope

Because of applications of composites in space and in low temperature equipment, low temperature mechanical properties of glass fiber-reinforced epoxy have to be assessed. Experimental or analytical investigation on the tensile failure behavior of glass/epoxy laminated composite with/or without stress concentration subjected to thermo-mechanical static loadings at low temperatures has not been done yet. In the present work, a model was developed to perform the progressive failure analysis of quasi isotropic composite plates at low temperatures. The initial failure load is calculated by means of an elastic stress analysis. The load is increased step by step. For each given load, the stresses are evaluated and the appropriate failure criterion is applied to inspect for possible failure. For the failed element, material properties are modified according to the failure mode using a non-zero stiffness degradation factor. Then, the modified Newton–Raphson iteration is carried out until convergence is reached. This analysis is repeated for each load increment until the final failure occurs and the ultimate strength is determined. The present method yields results in a reasonable agreement with the experimental data at room temperature and −60°C. The effect of low temperature on the failure mechanism of the plates was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. S. Schutz, “Properties of composite materials for cryogenic applications,” Cryogenics, 38, Issue 1, 3–12 (1998).

    Article  CAS  Google Scholar 

  2. D. E. Baynham, D. Evans, S. J. Gamage, et al., “Transverse mechanical properties of glass reinforced composite materials at 4 K,” Cryogenics, 38, Issue 1, 61–67 (1998).

    Article  CAS  Google Scholar 

  3. Y. Shindo, H. Tokairin, K. Sanada, et al., “Compression behavior of glass-cloth/epoxy laminates at cryogenic temperature,” Cryogenics, 39, Issue 10, 821–827 (1999).

    Article  CAS  Google Scholar 

  4. X. F. Wang and J. H. Zhao, “Monte-Carlo simulation to the tensile mechanical behaviors of unidirectional composites at low temperatures,” Cryogenics, 41, Issue 9, 683–691 (2001).

    Article  CAS  Google Scholar 

  5. K. H. Ip, P. K. Dutta, and D. Hui, “Effects of low temperature on the dynamic moduli of thick composite beams with absorbed moisture,” Composites Part B: Engineering, 32, Issue 7, 599–607 (2001).

    Article  Google Scholar 

  6. S. Sánchez-Sáez, T. Gómez-del Rio, E. Barbero, et al., “Static behavior of CFRPs at low temperatures,” Composite Part B: Engineering, 33, Issue 5, 383–390 (2002).

    Article  Google Scholar 

  7. V. T. Bechel and R. Y. Kim, “Damage trends in cryogenically cycled carbon/polymer composites,” Compos. Sci. Technol., 64, Issue 12,1773–1784 (2004).

    Article  CAS  Google Scholar 

  8. R. Y. Kim and S. L. Donaldson, “Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperature,” Compos. Struct., 76, 62–66 (2006).

    Article  Google Scholar 

  9. P. Ifju, D. Myers, and W. Schultz, “Residual stress and thermal expansion of graphite epoxy laminates subjected to cryogenic temperatures,” Compos. Sci. Technol., 66, 2449–2455 (2006).

    Article  CAS  Google Scholar 

  10. P. Rupnowski, M. Gentz, and M. Kumosa, “Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature,” Compos. Sci. Technol., 66, 1045–1055 (2006).

    Article  CAS  Google Scholar 

  11. M. G. Kim, S. G. Kang, C. G. Kim, and C. W. Kong, “Tensile response of graphite/epoxy composite at low temperatures,” Compos. Struct., 79, No. 1, 84–89 (2007).

    Article  Google Scholar 

  12. T. Takeda, Y. Shindo, and F. Narita, “Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures,” Compos. Sci. Technol., 64, 2353–2362 (2004).

    Article  CAS  Google Scholar 

  13. Y. Shindo, K. Horiguchi, R. Wang, and H. Kudo, “Double cantilever beam measurement and finite element analysis of cryogenic Mode I interlaminar fracture toughness of glass-cloth/epoxy laminates,” J. Eng. Mater. Technol., 123, 191–197 (2001).

    Article  CAS  Google Scholar 

  14. R. J. Melcher and W. S. Johnson, “Mode I fracture toughness of an adhesively bonded composite-composite joint in a cryogenic environment,” Compos. Sci. Technol., 67, Issue 3-4, 501–506 (2007).

    Article  CAS  Google Scholar 

  15. Y. Shindo, A. Inamoto, and F. Narita, “Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures,” Acta Mater., 53, 1389–1396 (2005).

    Article  CAS  Google Scholar 

  16. Y. Shindo, A. Inamoto, F. Narita, and K. Horiguchi, “Mode I fatigue delamination growth in CFRP woven laminates at low temperatures,” Eng. Fract. Mech., 73, 2080–2090 (2006).

    Article  Google Scholar 

  17. S. Kumagai, Y. Shindo, and A. Inamoto, “Tension-tension fatigue behavior of GFRP woven laminates at low temperatures,” Cryogenics, 45, Issue 2, 123– 128 (2005).

    Article  CAS  Google Scholar 

  18. Y. Shindo, S. Takano, K. Horiguchi, and T. Sato, “Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension-tension cycling,” Cryogenics, 46, Issue 11, 794–798 (2006).

    Article  CAS  Google Scholar 

  19. G. Labeas, S. Belesis, and D. Stamatelos, “Interaction of damage failure and post-buckling behavior of composite plates with cut-outs by progressive damage modeling,” Composites Part B: Engineering, 39, Issue 2, 304–315 (2008).

    Article  Google Scholar 

  20. X. Liu and G. Wang, “Progressive failure analysis of bonded composite repairs,” Compos. Struct., 81, 331–340 (2007).

    Article  Google Scholar 

  21. Q. Zhao, S. V. Hoa, and S. V. Ouellette, “Progressive failure of triaxial woven fabric (TWF) composites with open holes,” Compos. Struct., 65, 419–431 (2004).

    Article  Google Scholar 

  22. B. M. Icten and R. Karakuzu, “Progressive failure analysis of pin-loaded carbon-epoxy woven composite plates,” Compos. Sci. Technol., 62, 1259–1271 (2002).

    Article  Google Scholar 

  23. T. Takeda, S. Takano, Y. Shindo, and F. Nurita, “Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures,” Compos. Sci. Technol., 65, 1691–1702 (2005).

    Article  CAS  Google Scholar 

  24. Y. Shindo, S. Takano, F. Narita, and K. Horiguchi, “Tensile and damage behavior of plain weave glass/epoxy composites at cryogenic temperatures,” Fusion Eng. Design, 81, Issue 20-22, 2479–2483 (2006).

    Article  CAS  Google Scholar 

  25. G. Akhras and W. C. Li, “Progressive failure analysis of thick composite plates using spline finite strip method,” Compos. Struct., 79, 34–43 (2007).

    Article  Google Scholar 

  26. M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “Progressive failure analysis of composite plates,” in: Proc. of 8th Iranian Aerospace Society Conference (Oct. 25–26, 2009, Esfahan).

  27. ANSYS, Ver. 10, ANSYS Inc., Canonsburg, PA (2005).

  28. M. M. Shokrieh, M. A. Torabizadeh,and A. Fereidoon, “An investigation on damage of quasi-isotropic laminated composite,” in: Proc. of 18th Annual International Conference on Mechanical Engineering, Tehran (2010).

  29. A. K. Kaw, Mechanics of Composite Materials, Taylor and Francis Group, LLC (2006).

  30. M. M. Shokrieh, Progressive Fatigue Damage Modeling of Composite Materials, Ph.D. Thesis, McGill University (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Torabizadeh.

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 123 – 137, May – June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokrieh, M.M., Torabizadeh, M.A. & Fereidoon, A. Progressive failure analysis of glass/epoxy composites at low temperatures. Strength Mater 44, 314–324 (2012). https://doi.org/10.1007/s11223-012-9384-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-012-9384-3

Keywords

Navigation