Skip to main content
Log in

A calculation-experimental study of crack-tip opening displacement and residual stresses upon warm prestressing

  • Published:
Strength of Materials Aims and scope

For a reactor pressure vessel steel 15Kh2MFA(III) experiments and calculations have been carried out to study the factors that have an influence on the increase of the lower-shelf fracture toughness in the temperature dependence diagrams upon warm prestressing. Stereoscopic fractography and numerical investigation have demonstrated that after the warm prestressing the crack tip remains blunt. This reduces the stress singularity during subsequent loading and raises the material fracture toughness. The paper gives the calculated data on residual stresses and crack-tip opening displacement during warm prestressing and upon relief. The calculated results are shown to agree well with the known analytical relations and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. V. Pokrovsky, V. T. Troshchenko, V. G. Kaplunenko, et al., “A promising method for enhancing resistance of pressure vessels to brittle fracture,” Int. J. Press. Vess. Piping, 58, 9–24 (1994).

    Article  CAS  Google Scholar 

  2. G. G. Chell, J. R. Haigh, and V. A. Vitek, “A theory of warm prestressing: experimental validation and the implication for elastic-plastic failure criteria,” Int. J. Fract., 17, No. 1, 61–82 (1981).

    Google Scholar 

  3. D. A. Curry, “A model for predicting the influence of warm prestressing and strain ageing on the cleavage fracture toughness of ferritic steels,” Int. J. Fract., 22, 145–159 (1983).

    Article  Google Scholar 

  4. B. T. Timofeev and V. I. Smirnov, “Calculated and experimental estimation of preliminary loading effect at elevated temperatures on fracture toughness of pressure vessel materials,” Int. J. Press. Vess. Piping, 63, 135–140 (1995).

    Article  CAS  Google Scholar 

  5. D. Lidbury and P. Birkett, “Effects of warm prestressing on the transition toughness behavior of an A533 Grade B Class I pressure vessel steel,” in: Fracture Mechanics: Twenty-First Symposium, ASTM STP 1074 (1990), pp. 264–285.

  6. P. A. Reed and J. F. Knott, “An investigation of the warm prestressing (WPS) effect in A533B weld metal,” Fatigue Fract. Eng. Mater. Struct., 15, No. 12, 1251–1270 (1992).

    Article  CAS  Google Scholar 

  7. F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure vessel steel,” J. Metall. Trans., 14A, 2277–2287 (1983).

    Article  CAS  Google Scholar 

  8. J. Y. Chen, V. B. Wang, G. Z. Wang, and X. Chen, “Mechanism of effects of warm prestressing on apparent toughness of precracked specimens of HSLA steels,” Eng. Fract. Mech., 68, 1669–1686 (2001).

    Article  Google Scholar 

  9. D. J. Smith, S. Hadidimoud, and H. Fowler, “The effects of warm prestressing on cleavage fracture. Part 1: Evaluation of experiments,” Eng. Fract. Mech., 71, 2015–2032 (2004).

    Article  Google Scholar 

  10. D. J. Smith, S. Hadidimoud, and H. Fowler, “The effects of warm pre-stressing on cleavage fracture. Part 2: Finite element analysis,” Eng. Fract. Mech., 71, 2033–2051 (2004).

    Article  Google Scholar 

  11. H. Stockl, R. Doschen, W. Schmitt, et al., “Quantification of the warm pre-stressing effect in a shape welded 10MnMoNi5–5 material,” Eng. Fract. Mech., 67, 119–137 (2000).

    Article  Google Scholar 

  12. R. O. Ritchie, J. F. Knott, and J. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Solids, 21, 395–410 (1973).

    Article  CAS  Google Scholar 

  13. V. V. Pokrovskii and A. G. Ivanchenko, “Influence of the modes of thermo-mechanical preloading on the resistance of heat-resistant steels to brittle fracture,” Strength Mater., 31, No. 2, 200–209 (1999).

    Article  CAS  Google Scholar 

  14. V. V. Pokrovsky, A. G. Ivanchenko, Yu. L. Kovrizhkin, and V. A. Sednev, “Methods for estimation and enhancing of resistance of pressure vessel materials to fracture at different stages of service taking into account actual dimensions of the construction,” in: Proc. Int. Symp. on Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors (Sept. 14–18, 1998), Fontevraud, France (1998), Vol. 1, pp. 61–73.

  15. V. T. Troshchenko, P. V. Yasnii, V. V. Pokrovskii, and Yu. S. Skorenko, “Method and some results of study of fatigue-crack opening,” Strength Mater., 19, No. 10, 1330–1336 (1987).

    Article  Google Scholar 

  16. A. J. Krasovskij, V. N. Krasiko, A. S. Stukaturova, et al., “Vztah lomove houzevnatosti a kritickeho otevreni trhliny pri dinamickem zatazovani,” Zvaranie, 31, No. 1, 322–326 (1982).

    Google Scholar 

  17. A. J. Krasovskij, Yu. A. Kashtalyan, and V. N. Krasiko, “Brittle-to-ductile transition in steels and the critical transition temperature,” Int. J. Fract., 17, No. 6, 579–582 (1983).

    Google Scholar 

  18. A. Ya. Krasovskii, V. N. Krasiko, and Yu. V. Kashtalyan, “Stereofractographic analysis of the cracking resistance of structural steels,” Strength Mater., 19, No. 11, 1478–1484 (1987).

    Article  Google Scholar 

  19. V. V. Pokrovskii, V. G. Kaplunenko, V. G. Fedorov, et al., “Preliminary thermomechanical loading (warm prestressing) as a promising method for increasing the radiation resistance of the vessels of water-moderated water-cooled power reactors operating under high pressure,” Strength Mater., 30, No. 2, 131–144 (1998).

    Article  CAS  Google Scholar 

  20. V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials. Handbook [in Russian], in 4 volumes, Naukova Dumka, Kiev (1988).

    Google Scholar 

  21. A. A. Kotlyarenko, T. A. Prach, V. V. Kharchenko, and A. Yu. Chirkov, “Numerical simulation of stress–strain state near crack tip in a compact tensile specimen,” Strength Mater., 41, No. 1, 106–112 (2009).

    Article  Google Scholar 

  22. P. Yasnii, Yu. Pyndus, I. Okipnyi, and I. Shul’gan, “The influence of warm prestresssing on the crack-tip stress–strain state,” Visn. Ternopil. Derzh. Tekhn. Univ., 12, No. 2, 7–12 (2007).

    Google Scholar 

  23. H. Blumenauer, M. Kremper, and J. Ude, “Residual stresses at a blunted crack tip,” Fiz.-Khim. Mekh. Mater., No. 5, 49–52 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 82 – 94, January – February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrovskii, V.V., Sidyachenko, V.G. & Ezhov, V.N. A calculation-experimental study of crack-tip opening displacement and residual stresses upon warm prestressing. Strength Mater 43, 56–65 (2011). https://doi.org/10.1007/s11223-011-9267-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-011-9267-z

Keywords

Navigation