Skip to main content
Log in

Strain–life curves of steels and methods for determining the curve parameters. Part 2. Methods based on the use of artificial neural networks

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

The authors look into the possibility of using artificial neural networks for predicting the deformation characteristics of steels (the parameters of the Basquin–Manson–Coffin strain–life curve equation) based on static strength and plasticity characteristics, by constructing four independent neural networks with different configurations of input and output data. The prediction of parameters of the Basquin–Manson–Coffin equation and the fatigue life calculations by means of artificial neural networks are demonstrated to provide a better accuracy in comparison to the available conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. T. Troshchenko and L. A. Khamaza, “Strain–life curves of steels and methods for determining the curve parameters. Part 1. Conventional methods,” Strength Mater., 42, No. 6, 647–659 (2010).

    Article  CAS  Google Scholar 

  2. S. Haykin, Neural Networks: A Comprehensive Foundation, Second Edition, Prentice Hall, Upper Saddle River, NJ (1999).

    Google Scholar 

  3. J. Y. Kang, B. I. Choi, and H. J. Lee, “Application of artificial neural network for predicting plain strain fracture toughness using tensile test results,” Fatigue Fract. Eng. Mater. Struct., 29, 321–329 (2006).

    Article  CAS  Google Scholar 

  4. M. E. Haque and K. V. Sudhakar, “ANN back-propagation prediction model for fracture toughness in microalloy steel,” Int. J. Fatigue, 24, 1003–1010 (2002).

    Article  CAS  Google Scholar 

  5. A. Seibi and S. M. Al-Alawi, “Prediction of fracture toughness using artificial neural networks (ANNs),” Eng. Fract. Mech., 56, 311–319 (1997).

    Article  Google Scholar 

  6. R. Ince, “Prediction of fracture parameters of concrete by artificial neural networks,” Eng. Fract. Mech., 71, 2143–2159 (2004).

    Article  Google Scholar 

  7. J. Y. Kang and J. H. Song, “Neural network applications in determining the fatigue crack opening load,” Int. J. Fatigue, 20, 57–69 (1998).

    Article  CAS  Google Scholar 

  8. M. E. Haque and K. V. Sudhakar, “ANN based prediction model for fatigue crack growth in DP steel,” Fatigue Fract. Eng. Mater. Struct., 23, 63–68 (2001).

    Google Scholar 

  9. M. E. Haque and K. V. Sudhakar, “Prediction of corrosion-fatigue behaviour of DP steel through artificial neural networks,” Int. J. Fatigue, 23, 1–4 (2001).

    Article  CAS  Google Scholar 

  10. Y. Cheng, W. L. Huang, and C. Y. Zhou, “Artificial neural network technoligy for the data processing of on-line corrosion fatigue crack growth monitoring,” Int. J. Press. Vess. Piping, 76, 113–116 (1999).

    Article  Google Scholar 

  11. K. Genel, “Application of arificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests,” Int. J. Fatigue, 26, 1027–1035 (2004).

    Article  CAS  Google Scholar 

  12. P. Artymiak, L. Bukowski, J. Feliks, et al., “Determination of SN curves with the application of artifical neural networks,” Fatigue Fract. Eng. Mater. Struct., 22, 723–728 (1999).

    Google Scholar 

  13. V. Venkatesh and H. J. Rack, “A neural network approach to evaluated temperature creep-fatigue life prediction,” Fatigue Fract. Eng. Mater. Struct., 21, 225–234 (1999).

    CAS  Google Scholar 

  14. T. T. Pleune and O. K. Chopra, “Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels,” Nucl. Eng. Design, 197, 1–12 (2000).

    Article  CAS  Google Scholar 

  15. R. C. S. F. Junior, A. D. D. Neto, and E. M. F. Aquino, “Building of constant life diagrams of fatigue using artificial neural networks,” Int. J. Fatigue, 27, 746–751 (2005).

    Article  Google Scholar 

  16. S. Malinov and W. Sha, “Software products for modelling and simulation in materials science,” Comput. Mater. Sci., 28, 179–198 (2003).

    Article  CAS  Google Scholar 

  17. K. Genel, S. C. Kurnaz, and M. Durman, “Modelling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network,” Mater. Sci. Eng., A363, 203–210 (2002).

    Google Scholar 

  18. T. Sourmail, H. K. D. H. Bhadieshia, and D. J. MacKay, “Neural network model of creep strength of austenitic stainlees steels,” Mater. Sci. Tech., 8, 655–663 (2002).

    Article  Google Scholar 

  19. V. T. Troshchenko, P. P. Lepikhin, L. A. Khamaza, and Yu. N. Babich, “Computerized data bank “Strength of Materials”,” Strength Mater., 41, No. 3, 235–242 (2009).

    Article  Google Scholar 

  20. H. P. Lieurade and C. Maillard-Salin, “Low-cycle fatigue behavior of welded joints in high strength steels,” in: C. Amzallag, B. N. Leis, and P. Rabble (Eds.), Low-Cycle Fatigue and Life Prediction, ASTM STP 770 (1982), pp. 311–336.

  21. M. Truchon, “Application of low-cycle fatigue test results to crack initiation from notches,” in: C. Amzallag, B. N. Leis, and P. Rabbe (Eds.), Low-Cycle Fatigue and Life Prediction, ASTM STP 770 (1982), pp. 254–268.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 5 – 26, January – February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troshchenko, V.T., Khamaza, L.A., Apostolyuk, V.A. et al. Strain–life curves of steels and methods for determining the curve parameters. Part 2. Methods based on the use of artificial neural networks. Strength Mater 43, 1–14 (2011). https://doi.org/10.1007/s11223-011-9262-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-011-9262-4

Keywords

Navigation