Skip to main content
Log in

Refinement of parameters of the model for nonlocalized damage accumulation to describe deformation of the steel 20

  • Published:
Strength of Materials Aims and scope

We present a method for refining the parameters of the model for nonlocalized damage accumulation in the steel 20 under static deformation, which are determined by variation in elastic modulus and degree of homogeneity of the material, that corresponds to the scatter of hardness characteristics during mass measurements at different stages of repeated static loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Kobayashi (Ed.), Handbook on Experimental Mechanics, Book 2, Prentice Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  2. J. Lemaitre, Damage Mechanics, The Bath Press (1990).

  3. E. Barbero., F. Greco, and P. Lonetti, “Continuum damage-healing mechanics with application to soft-heading composites,” Int. J. Damage Mech., 14, No. 1, 51–81 (2005).

    Article  Google Scholar 

  4. A. A. Lebedev, N. R. Muzyka and N. L. Volchek, “Determination of damage accumulated in structural materials by the parameters of scatter of their hardness characteristics,” Strength Mater., 34, No. 4, 317–321 (2002).

    Article  Google Scholar 

  5. A. A. Lebedev, N. R. Muzyka, and N. L. Volchek, A Method of Assessment of Material Degradation Due to Damage Accumulation during Operating Time. LM-Hardness Method [in Ukrainian], Patent No. 52107A Ukraine, Issued at 15.01.2003, Bull. No. 1.

  6. A. L. Gurson, “Continuum theory ductile rupture by void nucleation and growth. Pt. I: Yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Techn., 99, No. 1, 2–15 (1977).

    Article  Google Scholar 

  7. A. Needelman and V. Tvergaard, “An analysis of ductile rupture in notched bars,” J. Mech. Phys. Solids, 32, No. 6, 461–490 (1984).

    Article  Google Scholar 

  8. V. T. Troshchenko, A. Ya. Krasovskii, V. V. Pokrovskii, et al., Resistance of Materials to Deformation and Fracture. Handbook [in Russian], Vol. 2, Naukova Dumka, Kiev (1994).

    Google Scholar 

  9. M. Ya. Leonov and K. N. Rusinko, “Mechanism for the deformation of a semibrittle object,” in: Plasticity and Brittleness [in Russian], Ilim, Frunze (1967), pp. 86–102.

    Google Scholar 

  10. G. Rousselier, “Ductile fracture models and their potential in local approach of fracture,” Nuclear Eng. Design, 105, No. 1, 97–111 (1987).

    Article  CAS  Google Scholar 

  11. N. R. Hansen and H. L. Schreyer, “A thermodynamically consistent framework for theories elastoplasticity coupled with damage,” Int. J. Struct., 31, No. 3, 359–389 (1994).

    Article  Google Scholar 

  12. N. I. Bobyr’, A. P. Grabovskii, A. P. Khalimon, et al., “Kinetics of scattered fracture in structural metals under elastoplastic deformation,” Strength Mater., 39, No. 3, 237–245 (2007).

    Article  Google Scholar 

  13. L. M. Kàchanov, “On the creep fracture time,” Izv. AN SSSR, No. 8, 25–35 (1958).

    Google Scholar 

  14. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  15. A. A. Il’yushin, Continuum Mechanics [in Russian], Moscow State University, Moscow (1990).

    Google Scholar 

  16. D. Krajcinovic and G. U. Foneska, “The continuum damage theory for brittle materials,” J. Appl. Mech., 48, 809–815 (1981).

    Article  Google Scholar 

  17. J. Lemaitre, “A continuous damage mechanics model for ductile fracture,” J. Eng. Mater. Technol., 107, 83–89 (1985).

    Article  Google Scholar 

  18. N. Bonora, D. Gentile, A. Pirondi, and N. Golam, “Ductile damage evolution under triaxial state of stress: theory and experiments,” Int. J. Plasticity, 21, No. 5, 981–1007 (2005).

    Article  CAS  Google Scholar 

  19. V. A. Lubarda and D. Krajcinovic, “Some fundamental issues in rate theory of damage-elastoplasticity,” Int. J. Plasticity, 11, No. 7, 763–797 (1995).

    Article  Google Scholar 

  20. G. Z. Voyiadjis and T. Park, “Kinematics description of damage for finite strain plasticity,” Int. Eng. Sci., 37, No. 7, 803–830 (1999).

    Article  Google Scholar 

  21. C. L. Chow and J. Wang, “An anisotropic theory of continuum damage mechanics for ductile fracture,” Eng. Fract. Mech., 27, No. 5, 547–558 (1987).

    Article  Google Scholar 

  22. G. Voyiadjis and R. K. Abou Al-Rub, “On the coupling of anisotropic damage and plasticity models for ductile materials,” Int. Solids Struct., 40, No. 11, 2611–2643 (2003).

    Article  Google Scholar 

  23. A. A. Lebedev and N. G. Chausov, New Methods for the Evaluation of the Degradation of the Mechanical Properties of the Metal of Structures in the Process of Operation [in Russian], Kiev (2004).

  24. A. A. Lebedev and V. P. Shvets, “Assessment of damage in structural steels by the parameters of scatter of hardness characteristics in loaded and unloaded states,” Strength Mater., 40, No. 3, 29–37 (2008).

    Article  Google Scholar 

  25. GOST 2999-75. Metals and Alloys. The Vickers Hardness Test Method [in Russian], Izd. Standartov, Moscow (1975).

  26. W. Weibull, “A statistical theory of the strength of materials,” Proc. Roy. Swed. Inst. Eng. Res., No. 151, 1–45 (1939).

    Google Scholar 

  27. E. J. Gumbel, Statistical Theory of Extreme Values and Some Practical Application, National Bureau of Standards, Washington (1954).

    Google Scholar 

  28. R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York (1971).

    Google Scholar 

  29. M. I. Bobyr and O. M. Maslo, “Generalized phenomenological damage model under complex loading,” NTUU “KPI,” No. 4, 26–29 (2003).

  30. V. P. D’yakonov, MATLAB 6/6.1/6.5 + Simulink 4/5 in Mathematics and Modeling. Complete User Guide [in Russian], SOLON, Moscow (2003).

    Google Scholar 

  31. J. Rice and D. Tracey, “On ductile enlargement of voids in triaxial stress fields,” J. Mech. Phys. Solids, 17, 50–62 (1969).

    Article  Google Scholar 

  32. A. A. Lebedev and V. M., Mikhalevich, “On the choice of stress invariants in solving problems of mechanics,” Strength Mater., 35, No. 3, 217–224 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 146 – 160, November – December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucher, V.N. Refinement of parameters of the model for nonlocalized damage accumulation to describe deformation of the steel 20. Strength Mater 42, 735–745 (2010). https://doi.org/10.1007/s11223-010-9261-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-010-9261-x

Keywords

Navigation