Skip to main content
Log in

Life prediction of titanium and aluminum alloys under fretting fatigue conditions using various crack propagation criteria. Part 1. Experimental and calculation techniques

  • Published:
Strength of Materials Aims and scope

Using the analysis of state-of-the-art techniques of fretting fatigue studies and results of description of multi-stage fatigue crack propagation in fretting zone within fracture mechanics framework, we have refined the calculation-and-experimental technique earlier proposed by the author. This technique allows one to predict current values of the angle and rate of inclined crack propagation in the subsurface layers of material under fretting conditions using calculated stress intensity factors KI and KII for contact and bulk loads, as well as experimental crack resistance diagrams by KI and/or KII types. We have performed comparative analysis of various techniques for construction of crack resistance diagrams by KI and KII types and obtained the results for AMg6N and Al 7075-T6 aluminum alloys and VT9 titanium alloy. It is shown that the initial stage of crack propagation in the above alloys can occur in the maximal shear stress plane by shear mechanism or in the maximal tensile stress plane by cleavage mechanism according to the Otsuka two-parameter criterion or to the Richard empirical criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Nowell, D. Dini, and D. A. Hills, “Recent developments in the understanding of fretting fatigue,” Eng. Fract. Mech., 73, 207–222 (2006).

    Article  Google Scholar 

  2. B. P. Conner, T. C. Lindley, T. Nicholas, and S. Suresh, “Application of a fracture mechanics based life prediction method for contact fatigue,” Int. J. Fatigue, 26, 511–520 (2004).

    Article  Google Scholar 

  3. L. Chambon and B. Journet, “Modeling of fretting fatigue in a fracture-mechanics framework,” Tribology Int., 39, 1220–1226 (2006).

    Article  Google Scholar 

  4. C. Navarro, S. Munoz, and J. Dominguez, “On the use of multiaxial fatigue criteria for fretting fatigue life assessment,” Int. J. Fatigue, 30, 32–44 (2008).

    Article  CAS  Google Scholar 

  5. S. Munoz, C. Navarro, and J. Dominguez, “Application of fracture mechanics to estimate fretting fatigue endurance curves,” Eng. Fract. Mech., 74, 2168–2186 (2007).

    Article  Google Scholar 

  6. C. Navarro, S. Munoz, and J. Dominguez, “Propagation in fretting fatigue from a surface defect,” Tribology Int., 39, 1149–1157, (2006).

    Article  CAS  Google Scholar 

  7. S. Munoz, H. Proudhon, J. Dominguez, and S. Fouvry, “Prediction of the crack extension under fretting wear loading conditions,” Int. J. Fatigue, 28, 1769–1779 (2006).

    Article  CAS  Google Scholar 

  8. B. U. Wittkowski, P. R. Birch, J. Dominguez, and S. Suresh, “An experimental investigation of fretting fatigue with spherical contact in 7075T6 aluminium alloy,” in: C. B. Elliot, D. W. Hoepner, and V. Chandrasekaran (Eds.), Fretting Fatigue: Current Technoogies and Practices, ASTM STP 1367 (1999), pp. 213–227.

  9. L. S. Rossino, F. C. Castro, W. W. Bose Filho, and J. A. Araujo, “Issues on the mean stress effect in fretting fatigue of a 7050-T7451 Al alloy posed by new experimental data,” Int. J. Fatigue, 31, 2041–2048 (2009).

    Article  CAS  Google Scholar 

  10. V. Lamacq, M.-C. Dubourg, and L. Vincent, “Crack path prediction under fretting fatigue – a theoretical and experimental approach,” J. Tribol., 118, 711–720 (1996).

    Article  CAS  Google Scholar 

  11. C. Guimmarra and J. R. Brockenbrough, “Fretting fatigue analysis using a fracture mechanics based small crack growth prediction method,” Tribology Int., 39, 1166–1171 (2006).

    Article  Google Scholar 

  12. D. Houghton, P. M. Wavish, E. J. Williams, and S. B. Leen, “Multiaxial fretting fatigue testing and prediction for splined couplings,” Int. J. Fatigue, 31, 805–1815 (2009).

    Article  Google Scholar 

  13. M. S. D. Jacob, P. R. Arora, M. Saleem, et al., “Fretting fatigue crack initiation: An experimental and theoretical study,” Int. J. Fatigue, 29, 1328–1338 (2007).

    Article  CAS  Google Scholar 

  14. P. R. Arora, M. S. D. Jacob, S. N. Sapuan, et al., “Experimental evaluation of fretting fatigue test apparatus,” Int. J. Fatigue, 29, 941–952 (2007).

    Article  CAS  Google Scholar 

  15. D. Nowell and J. A. Araujo, “The effect of rapidly varying contact stress fields on fretting fatigue,” Int. J. Fatigue, 24, No. 7, 763–775 (2002).

    Article  Google Scholar 

  16. T. Hattori, M. Nakamura, H. Sakata, and T. Watanabe, “Fretting fatigue analysis using fracture mechanics,” JMSE Int. J. Ser. 1, 31, No 1, 100–107 (1988).

    Google Scholar 

  17. T. Hattori, M. Nakamura, and T. Watanabe, “Simulation of fretting fatigue life by using stress-singularity parameters and fracture mechanics,” Tribology Int., 36, 87–97 (2003).

    Article  Google Scholar 

  18. L. J. Fellows, D. Nowell, and D. A. Hills, “Analysis of crack initiation and propagation in fretting fatigue: the effective initial flaw size methodology,” Fatigue Fract. Eng. Mater. Struct., 20, No. 1, 61–70 (1997).

    Article  CAS  Google Scholar 

  19. C. D. Lykins, S. Mall, and V. Jain, “An evaluation of parameters for predicting fretting fatigue crack initiation,” Int. J. Fatigue, 22, 703–716 (2000).

    Article  CAS  Google Scholar 

  20. T. Nicholas, A. Hutson, R. John, and S. Olson, “A fracture mechanics assessment for fretting fatigue,” Int. J. Fatigue, 25, 1069–1077 (2003).

    Article  CAS  Google Scholar 

  21. P. R. Edwards, “Application of fracture mechanics to predicting fretting fatigue,” in: R. B. Waterhouse (Ed.), Fretting Fatigue, Applied Science, London (1985), pp. 67–97.

    Google Scholar 

  22. K. Tanaka. Y. Mutoh, S. Sakoda, et al., “Fretting fatigue in 0.55 C spring steel and 0.45 C carbon steel,” Fatigue Fract. Eng. Mater. Struct., 8, No. 2, 129–142 (1985).

    Article  Google Scholar 

  23. K. J. Nix and T. C. Lindley, “The application of fracture mechanics to fretting fatigue,” Fatigue. Fract. Eng. Mater. Struct., 8, No. 2, 143–160 (1985).

    Article  Google Scholar 

  24. D. B. Garcia and A. F. Grandt, “Application of a total life prediction model for fretting fatigue in Ti–6Al–4V,” Int. J. Fatigue, 29, 1311–1318 (2007).

    Article  CAS  Google Scholar 

  25. Y. N. Lenets and R. S. Bellows, “Crack propagation life prediction for Ti–6Al–4V based on striation spacing measurements,” Int. J. Fatigue, 22, 521–529 (2000).

    Article  CAS  Google Scholar 

  26. V. T. Troshchenko, G. V. Tsybanev, and A. O. Khotsyanovskii, “Life of steels in fretting fatigue,” Strength Mater., 20, No. 6, 703–709 (1988).

    Article  Google Scholar 

  27. A. O. Khotsyanovskii, Life Prediction of Structural Steels and Alloys under Fretting Fatigue for Fatigue Crack Propagation Stage [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1990).

  28. V. T. Troshchenko, G. V. Tsybanev, and A. O. Khotsyanovsky, “Two-parameter model of fretting fatigue crack growth,” Fatigue Fract. Eng. Mater. Struct., 17, No. 1, 15–23 (1994).

    Article  Google Scholar 

  29. G. Marci and A. O. Khotsyanovsky, “Testing procedures for fatigue crack propagation and the K eff - concept,” Strength Mater., 27, No. 7, 363–378 (1995).

    Article  Google Scholar 

  30. L. A. Sosnovskii, “Experimental basic of tribofatigue. Part 1,” Strength Mater., 29, No. 3, 262–268 (1997).

    Article  CAS  Google Scholar 

  31. L. A. Sosnovskii (Ed.) and N. A. Makhutov, Tribofatigue: Wear-Fatigue Damage in Machine Operation Resource and Safety Problems [in Russian], “Tribofratika,” Moscow–Gomel (2000).

  32. F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–525 (1963).

    Google Scholar 

  33. A. Fatemi and D. A. Socie, “A critical plane approach to multiaxial fatigue damage including out of phase loading,” Fatigue Fract. Eng. Mater. Struct., 11, No. 3, 149–165 (1988).

    Article  Google Scholar 

  34. D. P. Rooke and D. A. Jones, Stress Intensity Factors in Fretting Fatigue, RAE Technical Report 77181, Farnborough (1977).

  35. D. P. Rooke, D. B. Rayaprolu, and M. H. Aliabadi, “Crack-line and edge Green’s functions for stress intensity factors of inclined edge cracks,” Fatigue Fract. Eng. Mater. Struct., 15, No. 5, 441–461 (1992).

    Article  CAS  Google Scholar 

  36. A. E. Giannakopoulos, T. C. Lindley, and S. Suresh, “Aspects of the equivalence between contact mechanics and fracture mechanics: theoretical connections and a life-prediction methodology for fretting fatigue,” Acta Mater., 46, No. 9, 2955–2968 (1988).

    Article  Google Scholar 

  37. A. E. Giannakopoulos, T. A. Venkatesh, T. C. Lindley, and S. Suresh, “The role of adhesion in contact fatigue,” Acta Mater., 47, No. 18, 4635–4664 (1999).

    Article  Google Scholar 

  38. H. A. Richard, M. Fulland, and M. Sander, “Theoretical crack path prediction,” Fatigue Fract. Eng. Mater. Struct., 28, 3–12 (2005).

    Article  Google Scholar 

  39. K. N Smith, P. Watson, and T. H. Topper, “A stress strain function for the fatigue of metals,” J. Mater., JMLSA, 5, 767–778 (1970).

    Google Scholar 

  40. G. Ñ. Sih, “Strain-energy-density factor applied to mixed-mode crack problems,” Int. J. Fract., 10, 305–321 (1974).

    Article  Google Scholar 

  41. M. Schollmann, M. Fulland, and H. A. Richard, “Development of a new software for adaptive crack growth simulations in 3D structures,” Eng. Fract. Mech., 70, 249–268 (2003).

    Article  Google Scholar 

  42. A. Otsuka, K. Tohdo, K. Sakakibori, and T. Yoshida, “Mode II fatigue crack growth mechanism and its dependency on material in aluminium alloys,” J. Jap. Soc. Eng., 34, No. 387, 1174–1182 (1985).

    Google Scholar 

  43. D. Benuzzi, E. Bormetti, and G. Dozella, “Modelli numerici per lo studio della propagazione di cricche superficiali da rolling contact fatigue in presenza di fluido,” XXX Convegno Nazionale AIAS, Alghero (SS), 12–15 Settembre 2001.

  44. M. Kaneta, M. Seutsugu and K. Murakami, “Mechanism of surface crack growth in lubricated rolling/sliding contacts,” Trans. ASME, J. Appl. Mech., 153, 1615–1635 (1986).

    Google Scholar 

  45. R. Roberts and J. Kibler, “Mode II fatigue crack propagation,” J. Basic Eng., 93, 671–680 (1971).

    Article  CAS  Google Scholar 

  46. H. W. Liu, “Shear fatigue crack growth: a literature survey,” Fatigue Fract. Eng. Mater. Struct., 8, 295–315 (1985).

    Article  Google Scholar 

  47. M. O. Wang, R. H. Hu, C. F. Qian, and J. C. M. Li, “Fatigue crack growth under Mode II loading,” Fatigue Fract. Eng. Mater. Struct., 18, 1443–1454 (1995).

    Article  CAS  Google Scholar 

  48. A. Otsuka, H. Sugawara, and M. Shomura, “A test method for Mode II fatigue crack growth relating to a model for rolling contact fatigue,” Fatigue Fract. Eng. Mater. Struct., 19, No. 10, 1265–1275 (1996).

    Article  CAS  Google Scholar 

  49. B. Cotterell and J. R. Rice, “Slightly curved or kinked cracks,” Int. J. Fract., 16, 155–169 (1980).

    Article  Google Scholar 

  50. A. Otsuka, Y. Fujii, and K. Maeda, “A new testing method to obtain mode II fatigue crack growth characteristics of hard materials,” Fatigue Fract. Eng. Mater. Struct., 27, No. 3, 203–212 (2004).

    Article  Google Scholar 

  51. Y. Murakami, S. Hamada, K. Sugino, and K. Takao, “New measurement mrthod of Mode II threshold stress intensity range ΔK th and its application,” J. Soc. Mater. Sci., 43, No. 493, 1264–1270 (1994).

    Google Scholar 

  52. Y. Murakami, T. Fukuhara, and S. Hamada, “Measurement of Mode II threshold stress intensity range ΔK IIth ,” J. Soc. Mater. Sci., 51, No. 8, 918–925 (1994).

    Google Scholar 

  53. M. Benedetti, M. Beghini, V. Fontanari, and B. Monelli, “Fatigue cracks emanating from sharp notches in high-strength aluminium alloys: the effect of loading direction, kinking, notch geometry and microstructure,” Int. J. Fatigue, 31, 1996–2005 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 76 – 104, November – December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khotsyanovskii, A.O. Life prediction of titanium and aluminum alloys under fretting fatigue conditions using various crack propagation criteria. Part 1. Experimental and calculation techniques. Strength Mater 42, 683–704 (2010). https://doi.org/10.1007/s11223-010-9256-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-010-9256-7

Keywords

Navigation