Skip to main content
Log in

Tensile properties of a Fe-32Mn-6Si shape memory alloy

  • Published:
Strength of Materials Aims and scope

Abstract

The tensile properties of a Fe-32Mn-6Si shape memory alloy were investigated. It was found that tensile properties depend on temperature, heat treatment and material structure. The relationships of martensitic transformation, tensile properties, and shape memory effect are discussed. Finally, we propose a macroscopic one-dimensional constitutive law describing the thermomechanical behavior in tensile loading. Numerically obtained results are close to the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sato, E. Chishima, K. Soma, and T. Mori, “Shape memory effect in γ → ε transformation in Fe-30Mn-Si alloy single crystal,” Acta Metall., 30, 1177–1183 (1982).

    Article  CAS  Google Scholar 

  2. A. Sato, E. Chishima, Y. Yamaji, and T. Mori, “Orientation and composition dependencies of SME in Fe-Mn-Si alloys,” Acta Metall., 32, 539–547 (1984).

    Article  Google Scholar 

  3. T. Y. Hsu, “Prediction of martensitic transformation start temperature M s in Fe-Mn-Si shape memory alloys,” Mater. Sci. Forum, 327–328, 199–222 (2000).

    Google Scholar 

  4. T. Bouraoui, K. Tamarat et B. Dubois, “Variations de la résistivité électrique associées aux transformations martensitiques dans l’acier a mémoire de forme FM30,” J. Phys. III, 6, 831–841 (1996).

    Article  CAS  Google Scholar 

  5. J. H. Yang and C. M. Wayman, “Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformation,” Metall. Trans., 32A, 1445–1154 (1992).

    Google Scholar 

  6. A. Sato, K. Soma, and T. Mori, “Hardening due to pre-existing ε-martensite in an Fe-30Mn-1Si alloy single crystal,” Acta Metall., 30, 1901–1907 (1982).

    Article  CAS  Google Scholar 

  7. O. Matsumura, T. Sumi, N. Tamura, et al., “Pseudoelasticity in an Fe-28Mn-6Si-5Cr shape memory alloy,” Mater. Sci. Eng., 279A, 201–206 (2000).

    Google Scholar 

  8. I. Goliboroda, K. Rusinko, and K. Tanaka, “Description of a Fe-based shape memory alloy thermomechanical behavior in terms of the synthetic model,” Comput. Mater. Sci., 13, 218–226 (1999).

    Article  CAS  Google Scholar 

  9. B. Peultier, T. Ben Zineb, and E. Patoor, “Modeling of the martensitic phase transformation for finite element computation,” J. Phys. IV, 115, 351–359 (2004).

    Article  Google Scholar 

  10. B. Peultier, T. Ben Zineb, and E. Patoor, “Macroscopic constitutive law of shape memory alloy thermomechanical behavior. Application to structure computation by FEM,” Mech. Mater., 38, 510–524 (2006).

    Article  Google Scholar 

  11. K. Tamarat, V. Stambouli, T. Bouraoui, and B. Dubois, “Structural study of Fe-Mn-Si and Fe-Mn-Cr shape memory steels,” J. Phys. IV, C4, 347–353 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Problemy Prochnosti, No. 2, pp. 55–65, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouraoui, T., Jemal, F. & Ben Zineb, T. Tensile properties of a Fe-32Mn-6Si shape memory alloy. Strength Mater 40, 203–211 (2008). https://doi.org/10.1007/s11223-008-9012-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-008-9012-4

Keywords

Navigation