Abstract
We employ a general Monte Carlo method to test composite hypotheses of goodness-of-fit for several popular multivariate models that can accommodate both asymmetry and heavy tails. Specifically, we consider weighted L2-type tests based on a discrepancy measure involving the distance between empirical characteristic functions and thus avoid the need for employing corresponding population quantities which may be unknown or complicated to work with. The only requirements of our tests are that we should be able to draw samples from the distribution under test and possess a reasonable method of estimation of the unknown distributional parameters. Monte Carlo studies are conducted to investigate the performance of the test criteria in finite samples for several families of skewed distributions. Real-data examples are also included to illustrate our method.
This is a preview of subscription content, access via your institution.





References
Abdul-Hamid, H., Nolan, J.P.: Multivariate stable densities as functions of one dimensional projections. J. Multivar. Anal. 67(1), 80–89 (1998)
Arslan, O.: An alternative multivariate skew Laplace distribution: properties and estimation. Stat. Pap. 51(4), 865–887 (2010)
Azzalini, A.: sn: the skew-normal and related distributions such as the skew-t and the SUN (2022). R package version 2.1.0. https://cran.r-project.org/web/packages/sn/
Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew normal distribution. J. Roy. Stat. Soc. B 61(3), 579–602 (1999)
Azzalini, A., Capitanio, A.: The Skew-Normal and Related Families. Cambridge University Press, New York (2014)
Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83(4), 715–726 (1996)
Azzalini, A., Genton, M.G.: Robust likelihood methods based on the skew-t and related distributions. Int. Stat. Rev. 76(1), 106–129 (2008)
Azzalini, A., Genton, M.G., Scarpa, B.: Invariance-based estimating equations for skew-symmetric distributions. Metron 68(3), 275–298 (2010)
Balakrishnan, N., Capitanio, A., Scarpa, B.: A test for multivariate skew-normality based on its canonical form. J. Multivar. Anal. 128, 19–32 (2014)
Boker, S.M., Neale, M.C., Maes, H.H., Spiegel, M., Brick, T.R., Estabrook, R., Bates, T.C., Gore, R.J., Hunter, M.D., Pritikin, J.N., Zahery, M., Kirkpatrick, R.M.: OpenMx: extended structural equation modelling (2022). R package version 2.20.7. https://cran.r-project.org/package=OpenMx
Byczkowski, T., Nolan, J.P., Rajput, B.: Approximation of multidimensional stable densities. J. Multivar. Anal. 46(1), 13–31 (1993)
Capitanio, A.: On the canonical form of scale mixtures of skew-normal distributions. Statistica (Bologna) 80(2), 145–160 (2020)
Chen, W., Genton, M.G.: Are you all normal? It depends. Int. Stat. Rev. 5, 4 (2022). https://doi.org/10.1111/insr.12512
Chen, F., Jiménez-Gamero, M.D., Meintanis, S., Zhu, L.: A general Monte Carlo method for multivariate goodness-of-fit testing applied to elliptical families. Comput. Stat. Data Anal. 175, 107548 (2022)
Ebner, B., Henze, N., Strieder, D.: Testing normality in any dimension by Fourier methods in a multivariate Stein equation. Can. J. Stat. 50(3), 992–1033 (2021)
Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman & Hall/CRC, Boca Raton (1990)
Field, C., Genton, M.G.: The multivariate g-and-h distribution. Technometrics 48(1), 104–111 (2006)
Flecher, C., Naveau, P., Allard, D.: Estimating the closed skew-normal distribution parameters using weighted moments. Stat. Prob. Lett. 79(19), 1977–1984 (2009)
Fragiadakis, K., Meintanis, S.G.: Goodness-of-fit tests for multivariate Laplace distributions. Math. Comput. Model. 53(5–6), 769–779 (2011)
Giacomini, R., Politis, D.N., White, H.: A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Economet. Theor. 29(3), 567–589 (2013)
González-Estrada, E., Villaseñor, J.A., Acosta-Pech, R.: Shapiro-Wilk test for multivariate skew-normality. Comput. Stat. 37(4), 1985–2001 (2022)
He, Y., Raghunathan, T.E.: Multiple imputation using multivariate gh transformations. J. Appl. Stat. 39(10), 2177–2198 (2012)
Henze, N.: Invariant tests for multivariate normality: a critical review. Stat. Pap. 43(4), 467–506 (2002)
Henze, N., Wagner, T.: A new approach to the BHEP tests for multivariate normality. J. Multivar. Anal. 62(1), 1–23 (1997)
Henze, N., Jiménez-Gamero, M.D., Meintanis, S.G.: Characterizations of multinormality and corresponding tests of fit, including for GARCH models. Econom. Theor. 35(3), 510–546 (2019)
Jeong, J., Yan, Y., Castruccio, S., Genton, M.G.: A stochastic generator of global monthly wind energy with Tukey g-and-h autoregressive processes. Stat. Sin. 29(3), 1105–1126 (2019)
Jiménez-Gamero, M.D., Kim, H.: Fast goodness-of-fit tests based on the characteristic function. Comput. Stat. Data Anal. 89, 172–191 (2015)
Jones, M.C., Pewsey, A.: Sinh-arcsinh distributions. Biometrika 96(4), 761–780 (2009)
Karling, M.J., Lopes, S.R.C., de Souza, R.M.: Multivariate \(\alpha \)-stable distributions: VAR(1) processes, measures of dependence and their estimations. J. Multivar. Anal. 195, 105153 (2023)
Kim, H., Genton, M.G.: Characteristic functions of scale mixtures of multivariate skew-normal distributions. J. Multivar. Anal. 102(7), 1105–1117 (2011)
Kotz, S., Kozubowski, T.J., Podgórski, K.: The Laplace Distribution and Generalizations. Birkhäuser, Boston (2001)
Kozubowski, T.J., Podgórski, K., Rychlik, I.: Multivariate generalized Laplace distribution and related random fields. J. Multivar. Anal. 113, 59–72 (2013)
Marchenko, Y.V., Genton, M.G.: A suite of commands for fitting the skew-normal and skew-t models. Stand Genom. Sci. 10(4), 507–539 (2010)
Meintanis, S.G., Hlávka, Z.: Goodness-of-fit tests for bivariate and multivariate skew-normal distributions. Scand. J. Stat. 37(4), 701–714 (2010)
Meintanis, S., Swanepoel, J.: Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms. Stat. Probab. Lett. 77(10), 1004–1013 (2007)
Meintanis, S.G., Ngatchou-Wandji, J., Taufer, E.: Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function. J. Multivar. Anal. 140, 171–192 (2015)
Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7(95), 2651–2667 (2006)
Modarres, R., Nolan, J.P.: A method for simulating stable random vectors. Comput. Stat. 9(1), 11–19 (1994)
Möstel, L., Fischer, M., Pfälzner, F., Pfeuffer, M.: Parameter estimation of Tukey-type distributions: a comparative analysis. Commun. Stat. Simul. Comput. 50(4), 957–992 (2021)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
Nolan, J.P.: Multivariate elliptically contoured stable distributions: theory and estimation. Comput. Stat. 28(5), 2067–2089 (2013)
Nolan, J.P., Panorska, A.K., McCulloch, J.H.: Estimation of stable spectral measures. Math. Comput. Model. 34(9–11), 1113–1122 (2001)
Nuttall, F.Q.: Body mass index: obesity, BMI, and health. Nutr. Today 50(3), 117–128 (2015)
Pudełko, J.: On a new affine invariant and consistent test for multivariate normality. Probab. Math. Stat. 25(1), 43–54 (2005)
R Core Team and contributors worldwide. stats: the R stats package (2022). R package version 4.3.0. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html
R Core Team. R: a language and environment for statistical computing (2022). R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ripley, B.: MASS: support functions and datasets for venables and Ripley’s MASS (2022). R package version 7.3-58.1. https://cran.r-project.org/package=MASS
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic models with infinite variance. Chapman & Hall/CRC, Boca Raton (2000)
Székely, G.J., Rizzo, M.L.: Energy statistics: a class of statistics based on distances. J. Stat. Plan. Inference 143(8), 1249–1272 (2013)
Tran, T., Wiskow, C., Aziz, M.A.: Skewed and flexible skewed distributions: a modern look at the distribution of BMI. Am. J. Undergrad. Res. 14(2), 45–63 (2017)
Tsang, S., Duncan, G.E., Dinescu, D., Turkheimer, E.: Differential models of twin correlations in skew for body-mass index (BMI). PLoS ONE 13(3), e0194968 (2018)
Yan, Y., Genton, M.G.: Non-Gaussian autoregressive processes with Tukey g-and-h transformations. Environmetrics 30(2), e2503 (2019)
Yan, Y., Jeong, J., Genton, M.G.: Multivariate transformed Gaussian processes. Jpn. J. Stat. Data Sci. 3(1), 129–152 (2020)
Acknowledgements
The authors thank the review team for the comments that improved the manuscript. This research was supported by the King Abdullah University of Science and Technology (KAUST). Simos Meintanis wishes to sincerely thank Marc Genton and the staff of KAUST for the invitation and the hospitality rendered during his visit to KAUST.
Author information
Authors and Affiliations
Contributions
The three authors worked on this version of the manuscript equally.
Corresponding author
Ethics declarations
Competing Interests
The authors have no financial or proprietary interests in any material discussed in this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Simos G. Meintanis: On sabbatical leave from the University of Athens.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Karling, M.J., Genton, M.G. & Meintanis, S.G. Goodness-of-fit tests for multivariate skewed distributions based on the characteristic function. Stat Comput 33, 99 (2023). https://doi.org/10.1007/s11222-023-10260-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11222-023-10260-0
Keywords
- Empirical characteristic function
- Goodness-of-fit tests
- Heavy tails
- Skewed distributions
- Skew-normal distribution
- Tukey g-and-h distribution