Skip to main content

On estimating the structure factor of a point process, with applications to hyperuniformity

Abstract

Hyperuniformity is the study of stationary point processes with a sub-Poisson variance in a large window. In other words, counting the points of a hyperuniform point process that fall in a given large region yields a small-variance Monte Carlo estimation of the volume. Hyperuniform point processes have received a lot of attention in statistical physics, both for the investigation of natural organized structures and the synthesis of materials. Unfortunately, rigorously proving that a point process is hyperuniform is usually difficult. A common practice in statistical physics and chemistry is to use a few samples to estimate a spectral measure called the structure factor. Its decay around zero provides a diagnostic of hyperuniformity. Different applied fields use however different estimators, and important algorithmic choices proceed from each field’s lore. This paper provides a systematic survey and derivation of known or otherwise natural estimators of the structure factor. We also leverage the consistency of these estimators to contribute the first asymptotically valid statistical test of hyperuniformity. We benchmark all estimators and hyperuniformity diagnostics on a set of examples. In an effort to make investigations of the structure factor and hyperuniformity systematic and reproducible, we further provide the Python toolbox structure_factor, containing all the estimators and tools that we discuss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Code availability

The code is published as an open-source Python toolbox under the project name structure-factor. he package is licensed under the MIT license and is available on Github https://github.com/For-a-few-DPPs-more/structure-factor and PyPI https://pypi.org/project/structure-factor/.

Notes

  1. https://github.com/For-a-few-DPPs-more/structure-factor.

  2. E.g., Hypothesis (H4) of Biscio and Waagepetersen (2019), when the linear statistic is the number of points, contradicts hyperuniformity.

  3. We note that during the reviewing process of our paper, a second version of the preprint (Rajala et al. 2020a) has been arXived (Rajala et al. 2020b). The changes in the new version do not seem to impact our work.

  4. The literature is inconsistent as to whether the structure factor is the measure \({\mathcal {S}}\) or its density S. We choose the density, which is also sometimes known as the scaled spectral density function.

  5. https://github.com/For-a-few-DPPs-more/structure-factor.

  6. https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks.

  7. https://for-a-few-dpps-more.github.io/structure-factor/.

  8. At https://github.com/For-a-few-DPPs-more/spatstat-interface and on PyPI.

  9. A violin plot gathers a box plot and a kernel density estimator of the assumed underlying density. The former shows the median (white point), the interquartile range (thick black bar in the center), and the rest of the distribution except for points determined as outliers (thin black line in the center). We also add the mean (red point).

References

  • Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009). ISBN 9780511801334. https://doi.org/10.1017/CBO9780511801334

  • Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC (2015). ISBN 9780429161704. https://doi.org/10.1201/B19708

  • Baddour, N., Chouinard, U.: Theory and operational rules for the discrete Hankel transform. J.Opt. Soc. Am. A 32(4), 611 (2015). ISSN 1084-7529. https://doi.org/10.1364/JOSAA.32.000611

  • Bardenet, R., Hardy, A.: Monte Carlo with determinantal point processes. Ann. Appl. Probab. 30(1), (2020). ISSN 1050-5164. https://doi.org/10.1214/19-AAP1504

  • Bardenet, R., Ghosh, S., Lin, M.: Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

  • Bartlett, M.S.: The spectral analysis of two-dimensional point processes. Biometrika 51(3–4), 299–311 (1964). ISSN 0006-3444. https://doi.org/10.1093/biomet/51.3-4.299

  • Beck, J.: Irregularities of distribution. I. Acta Math. 159, 1–49 (1987). ISSN 0001-5962. https://doi.org/10.1007/BF02392553

  • Belhadji, A., Bardenet, R., Chainais, P.: Kernel quadrature with DPPs. Adv. Neural Inf. Process. Syst. (NeurIPS) 32, 12927–12937 (2019)

    Google Scholar 

  • Belhadji, A., Bardenet, R., Chainais, P.: Kernel interpolation with continuous volume sampling. In: III, H.D., Singh, A., (eds.) International Conference on Machine Learning (ICML), Volume 119 of Proceedings of Machine Learning Research, pp. 725–735. PMLR (2020a)

  • Belhadji, A., Bardenet, R., Chainais, P.: A determinantal point process for column subset selection. J. Mach. Learn. Res. 21(197), 1–62 (2020b)

    MathSciNet  MATH  Google Scholar 

  • Biscio, C.A.N., Waagepetersen, R.: A general central limit theorem and a subsampling variance estimator for \(\alpha \)-mixing point processes. Scand. J. Stat. 46(4), 1168–1190 (2019). ISSN 0303-6898. https://doi.org/10.1111/sjos.12389

  • Boursier, J.: Optimal local laws and CLT for 1D long-range Riesz gases (2021). ArXiv e-prints. https://doi.org/10.48550/arXiv.2112.05881

  • Brémaud, P.: Fourier Analysis and Stochastic Processes. Springer, Cham (2014). ISBN 9780511801334. https://doi.org/10.1017/CBO9780511801334

  • Chiu, S.N., Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley (2013). ISBN 9780470664810. https://doi.org/10.1002/9781118658222

  • Coeurjolly, J.-F., Mazoyer, A., Amblard, P.-O.: Monte Carlo integration of non-differentiable functions on \([0,1]^\iota \), \(\iota =1,\ldots , d\), using a single determinantal point pattern defined on \([0,1]^d\). Electron. J. Stat. 15(2), 6228–6280 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Coste, S.: Order, fluctuations, rigidities (2021)

  • Daley, D., Vesilo, R.: Long range dependence of point processes, with queueing examples. Stoch. Process. Appl. 70(2), 265–282 (1997). ISSN 0304-4149. https://doi.org/10.1016/S0304-4149(97)00045-8

  • Diggle, P.J., Gates, D.J., Stibbard, A.: A nonparametric estimator for pairwise-interaction point processes. Biometrika 74(4), 763–770 (1987). ISSN 0006-3444. https://doi.org/10.1093/BIOMET/74.4.763

  • Guizar-Sicairos, M., Gutiérrez-Vega, J.C.: Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. J. Opt. Soc. Am. A 21(1), 53 (2004). ISSN 1084-7529. https://doi.org/10.1364/JOSAA.21.000053

  • Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, vol. 51. American Mathematical Society (2009). ISBN 978-0-8218-4373-4

  • Kailkhura, B., Thiagarajan, J.J., Rastogi, C., Varshney, P.K., Bremer, P.-T.: A spectral approach for the design of experiments: design, analysis and algorithms. J. Mach. Learn. Res. 19(34), 1–46 (2018)

    MathSciNet  MATH  Google Scholar 

  • Klatt, M.A., Lovrić, J., Chen, D., Kapfer, S.C., Schaller, F.M., Schönhöfer, P.W.A., Gardiner, B.S., Smith, A.-S., Schröder-Turk, G.E., Torquato, S.: Universal hidden order in amorphous cellular geometries. Nat. Commun. 10(1), 811 (2019). ISSN 2041-1723. https://doi.org/10.1038/s41467-019-08360-5

  • Klatt, M.A., Last, G., Yogeshwaran, D.: Hyperuniform and rigid stable matchings. Random Struct. Algorithms 57(2), 439–473 (2020). ISSN 1042-9832. https://doi.org/10.1002/rsa.20923

  • Landau, L.J.: Bessel functions: monotonicity and bounds. J. Lond. Math. Soc. 61(1), 197–215 (2000). ISSN 00246107. https://doi.org/10.1112/S0024610799008352

  • Murray, S., Poulin, F.: hankel: a Python library for performing simple and accurate Hankel transformations. J. Open Source Softw. 4(37), 1397 (2019). ISSN 2475-9066. https://doi.org/10.21105/joss.01397

  • Ogata, H.: A numerical integration formula based on the Bessel functions. Publ. Res. Inst. Math. Sci. 41(4), 949–970 (2005). ISSN 0034-5318. https://doi.org/10.2977/prims/1145474602

  • Osgood, B.: Lecture Notes for EE 261 the Fourier Transform and Its Applications. CreateSpace Independent Publishing Platform (2014). ISBN 9781505614497

  • Percival, D.B., Walden, A.T.: Spectral Analysis for Univariate Time Series, vol. 51. Cambridge University Press (2020). ISBN 9781139235723. https://doi.org/10.1017/9781139235723

  • Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., Ostromoukhov, V.: Variance analysis for Monte Carlo integration. ACM Trans. Graph. (Proc. SIGGRAPH) 34(4), 14 (2015). https://doi.org/10.1145/2766930

    Article  MATH  Google Scholar 

  • Rajala, T.A., Olhede, S.C., Murrell, D.J.: Spectral estimation for spatial point patterns (2020a). ArXiv e-prints (v1). https://doi.org/10.48550/arxiv.2009.01474

  • Rajala, T.A., Olhede, S.C., Murrell, D.J.: What is the Fourier transform of a spatial point process? (2020b). ArXiv e-prints (v1). https://doi.org/10.48550/ARXIV.2009.01474. arXiv:2009.01474

  • Rhee, C.-H., Glynn, P.W.: Unbiased estimation with square root convergence for SDE models. Oper. Res. 63(5), 1026–1043 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Riedel, K., Sidorenko, A.: Minimum bias multiple taper spectral estimation. IEEE Trans. Signal Process. 43(1), 188–195 (1995). ISSN 1053587X. https://doi.org/10.1109/78.365298

  • Samorodnitsky, G.: Stochastic Processes and Long Range Dependence. Springer (2016)

  • Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70(9), 1055–1096 (1982). ISSN 0018-9219. https://doi.org/10.1109/PROC.1982.12433

  • Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018). ISSN 03701573. https://doi.org/10.1016/j.physrep.2018.03.001

Download references

Acknowledgements

We thank Jean-François Coeurjolly, Michael Andreas Klatt, Günther Last, David Dereudre, and Simon Coste for insightful discussions along this project. The motivation for our multiscale test was sparked at the Karlsruhe workshop on New trends in point process theory in March 2022, by the lively discussions with other participants about a preliminary draft of our paper. We know from personal communication that, by then, Günther Last, Andreas Klatt, and Norbert Henze were independently working on their own test, whose preprint Anderson et al. (2009) came out as we were answering the referees on our own manuscript. Finally, we thank a referee for suggesting thinning a hyperuniform point process to assess the detection performance of our test. It has been independently brought to our attention that this procedure can also be found in Baddeley et al. (2015).

Funding

This work is supported by ERC-2019-STG-851866 and ANR-20-CHIA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diala Hawat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that relate to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Proposition 3

Proof

Let \(M \in L^p\) with \(p>0\). We first prove that \(Z_m\rightarrow Z\) in \(L^p\). As we have \(Z_m \rightarrow Z\) a.s., it is enough to show that \(Z_m\) is uniformly bounded in \(L^p\). For a realization \(M'\) of M we have,

$$\begin{aligned} |Z_m |\le \sum _{j=1}^{m \wedge M'} \frac{|Y_{j} - Y_{j-1} |}{{\mathbb {P}} (M \ge j)} \le \frac{M'}{{\mathbb {P}}(M \ge M')}. \end{aligned}$$

By assumption \(M \in L^p\) so \(Z_m\) is uniformly bounded in \(L^p\). This proves the first part of the proposition.

Before proving the additional two points, note that, since S is continuous,

$$\begin{aligned} {\mathbb {E}} [\widehat{S}_m(\textbf{k}_m^{\textrm{min}})] \xrightarrow [m\rightarrow \infty ]{} S(\textbf{0}). \end{aligned}$$
(57)

Now, let us prove the first point of the proposition. Assume that \(M \in L^1\) and \({\mathcal {X}}\) is hyperuniform, so that \(S(\textbf{0} )= 0\). Since \(\hat{S}_m\) is nonnegative, Equation (57) yields

$$\begin{aligned} \widehat{S}_m(\textbf{k}_m^{\textrm{min}}) \xrightarrow [m\rightarrow \infty ]{ L^1} 0. \end{aligned}$$

Moreover, letting \(f:x\mapsto 1\wedge x\), \(\vert f(x)\vert \le x\) on \({\mathbb {R}}^+\), so that

$$\begin{aligned} {\mathbb {E}} [\vert f(\widehat{S}_m(\textbf{k}_m^{\textrm{min}}))\vert ] \le {\mathbb {E}} [ \widehat{S}_m(\textbf{k}_m^{\textrm{min}}) ]\rightarrow 0, \end{aligned}$$

and

$$\begin{aligned} Y_m = f(\widehat{S}_m(\textbf{k}_m^{\textrm{min}})) \xrightarrow [m\rightarrow \infty ]{ L^1} 0. \end{aligned}$$
(58)

Since \({\mathbb {E}} [Y_m]= {\mathbb {E}}[Z_m]\) and \(Z_m\) converges in \(L^1\) to Z, by unicity of the limit, we have \({\mathbb {E}} [Z]=0\).

It remains to show the last point of the proposition. Assume again that \(M \in L^1\), but that \({\mathcal {X}}\) is not hyperuniform, so that \(S( \textbf{0}) >0\). Reasoning by contradiction, assume that \({\mathbb {E}} [Z]=0\). As \({\mathbb {E}} [Y_m]= {\mathbb {E}}[Z_m]\) and \(Z_m\) converges in \(L^1\) to Z, we get

$$\begin{aligned} {\mathbb {E}} [\widehat{S}_m(k_m^{\textrm{min}}) \mathbbm {1}_{\{ \widehat{S}_m(k_m^{\textrm{min}})<1 \}}] \xrightarrow [m \rightarrow \infty ]{} 0, \end{aligned}$$
(59)

and

$$\begin{aligned} {\mathbb {E}} [ \mathbbm {1}_{\{ \widehat{S}_m (k_m^{\textrm{min}}) \ge 1 \}}] \xrightarrow [m \rightarrow \infty ]{} 0. \end{aligned}$$
(60)

Meanwhile,

$$\begin{aligned} {\mathbb {E}} [\widehat{S}_m(k_m^{\textrm{min}})] \xrightarrow [m \rightarrow \infty ]{} S(\textbf{0} ) >0. \end{aligned}$$

Using Eq. (59), we get

$$\begin{aligned} {\mathbb {E}} [\widehat{S}_m(k_m^{\textrm{min}}) \mathbbm {1}_{\{ \widehat{S}_m(k_m^{\textrm{min}}) \ge 1 \}}] \xrightarrow [m \rightarrow \infty ]{} S(\textbf{0}) >0. \end{aligned}$$
(61)

Finally, Cauchy–Schwarz, together with Condition (54) and Eq. (60) yield

$$\begin{aligned}&{\mathbb {E}} [\widehat{S}_m(k_m^{\textrm{min}}) \mathbbm {1}_{\{ \widehat{S}_m(k_m^{\textrm{min}}) \ge 1 \}}] \le \\&\quad {\mathbb {E}} ^{1/2}[\widehat{S}^2_m(k_m^{\textrm{min}})] \times {\mathbb {E}}^{1/2} [\mathbbm {1}_{\{ \widehat{S}_m (k_m^{\textrm{min}}) \ge 1 \}}] \rightarrow 0, \end{aligned}$$

which contradicts Eq. (61) and ends the proof. \(\square \)

B Validity of Assumption (54)

In what follows, we show that Assumption (54) is satisfied for a homogeneous Poisson point process \({\mathcal {X}}\) of intensity \(\rho \), \(\widehat{S}= \widehat{S}_{\textrm{SI}}\), and \(W_m\) are increasing rectangular windows.

Let \(N_m = |{{\mathcal {X}} \cap W_m}|\). Then

$$\begin{aligned} \rho ^2&|{W_m}|^2 {\mathbb {E}} [\widehat{S}^2_m(\textbf{k}) ]\\&= {\mathbb {E}} \left( \left|\sum _{\textbf{x} \in {\mathcal {X}} \cap W_m } e^{- \textrm{i}\langle \textbf{k}, \textbf{x} \rangle } \right|^2 \right) ^2 \\&= {\mathbb {E}} \Big [ N_m^2 + \big (\sum _{\textbf{x}, \textbf{y} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y}} e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } \big ) ^2 \\&\quad + 2 N_m \sum _{\textbf{x}, \textbf{y} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y}} e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } \Big ] \\&= {\mathbb {E}} \Big [ 2 N_m^2 - N_m \\&\quad + \sum _{\textbf{x}, \textbf{y} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y}} 2 N_me^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}2 \langle \textbf{k}, \textbf{x} - \textbf{y} \rangle }\\&\quad + \sum _{\textbf{x}, \textbf{y}, \textbf{z} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y} \ne \textbf{z}} 2 e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } + e^{ \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } \\&\quad + \sum _{\textbf{x}, \textbf{y}, \textbf{z}, \textbf{t} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y} \ne \textbf{z} \ne \textbf{t}} e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} + \textbf{z} - \textbf{t}\rangle }\Big ]\\&= {\mathbb {E}} \Big [ 2 N_m^2 - N_m +\sum _{\textbf{x}, \textbf{y} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y}} 4 e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}2 \langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } \\&\quad + \sum _{\textbf{x}, \textbf{y}, \textbf{z} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y} \ne \textbf{z}} 4 e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } + e^{ \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } \\&\quad + \sum _{\textbf{x}, \textbf{y}, \textbf{z}, \textbf{t} \in {\mathcal {X}} \cap W_m }^{\textbf{x} \ne \textbf{y} \ne \textbf{z} \ne \textbf{t}} e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} + \textbf{z} - \textbf{t}\rangle } \Big ] \\&= {\mathbb {E}} [2 N_m^2 - N_m] \\&\quad + \int _{W_m \times W_m} \Big (4 e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}2 \langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } \Big ) \rho ^2 \textrm{d}{} \textbf{x} \textrm{d}{} \textbf{y} \\&\quad + \int _{W_m \times W_m \times W_m} \Big (4 e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} \rangle } + e^{- \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } \\&\quad + e^{ \textrm{i}\langle \textbf{k}, 2 \textbf{x} - \textbf{y} - \textbf{z} \rangle } \Big ) \rho ^3 \textrm{d}{} \textbf{x} \textrm{d}{} \textbf{y} \textrm{d}{} \textbf{z}\\&\quad + \int _{W_m \times W_m \times W_m \times W_m} e^{- \textrm{i}\langle \textbf{k}, \textbf{x} - \textbf{y} + \textbf{z} - \textbf{t}\rangle } \rho ^4 \textrm{d}{} \textbf{x} \textrm{d}{} \textbf{y} \textrm{d}{} \textbf{z} \textrm{d}{} \textbf{t}. \end{aligned}$$

The last line was obtained using the definition of the n-th product density \(\rho ^{(n)}\) and that for any \(n \ge 1\), \(\rho ^{(n)}\) of \({\mathcal {X}}\) simplifies to \(\rho ^n\). It is a well-known property of homogeneous Poisson point processes (Chiu et al. 2013, Section 2.3.3). Now, using the parity of \(\mathbbm {1}_{W_m}\) and that \(N_m\) is a Poisson r.v., we get

$$\begin{aligned}&{\mathbb {E}} [\widehat{S}^2_m(\textbf{k}_m^{\textrm{min}}) ]\nonumber \\&\quad = \frac{1}{(\rho |{W_m}|)^2 } \Big [ \rho |{W_m}| + 2 (\rho |{W_m}|)^2 \nonumber \\&\qquad + \rho ^4 {\mathcal {F}}^4 (\mathbbm {1}_{W_m}) (\textbf{k}_m^{\textrm{min}}) \nonumber \\&\qquad + \rho ^2 \Big (4 {\mathcal {F}}^2(\mathbbm {1}_{W_m}) (\textbf{k}_m^{\textrm{min}}) + {\mathcal {F}}^2(\mathbbm {1}_{W_m}) (2 \textbf{k}_m^{\textrm{min}})\Big ) \nonumber \\&\qquad + \rho ^3 \Big ( 4 |{W_m}| {\mathcal {F}}^2 (\mathbbm {1}_{W_m})(\textbf{k}_m^{\textrm{min}}) \nonumber \\&\qquad + 2 {\mathcal {F}}(\mathbbm {1}_{W_m}) (2 \textbf{k}_m^{\textrm{min}}) {\mathcal {F}}^2(\mathbbm {1}_{W_m}) (\textbf{k}_m^{\textrm{min}}) \Big ) \Big ]. \end{aligned}$$
(62)

Upon noting that \(\textbf{k}_m^{\textrm{min}} = (\frac{2 \pi }{L_1}, \cdots , \frac{2 \pi }{L_d})\) and

$$\begin{aligned} {\mathcal {F}}(\mathbbm {1}_{W_m})(\textbf{k})= \prod _{j=1}^d \frac{\sin (k_j L_j/2)}{k_j/2}. \end{aligned}$$

Equation (62) simplifies to

$$\begin{aligned} {\mathbb {E}} [\widehat{S}^2_m(\textbf{k}_m^{\textrm{min}}) ] = \frac{1}{\rho |{W_m}|} + 2. \end{aligned}$$

Thus Assumption (54) holds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawat, D., Gautier, G., Bardenet, R. et al. On estimating the structure factor of a point process, with applications to hyperuniformity. Stat Comput 33, 61 (2023). https://doi.org/10.1007/s11222-023-10219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10219-1

Keywords