Skip to main content
Log in

Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper studies the estimation of Gaussian graphical models in the unbalanced distributed framework. It provides an effective approach when the available machines are of different powers or when the existing dataset comes from different sources with different sizes and cannot be aggregated in one single machine. In this paper, we propose a new aggregated estimator of the precision matrix and justify such an approach by both theoretical and practical arguments. The limit distribution and convergence rate for this estimator are provided under sparsity conditions on the true precision matrix and controlling for the number of machines. Furthermore, a procedure for performing statistical inference is proposed. On the practical side, using a simulation study and a real data example, we show that the performance of the distributed estimator is similar to that of the non-distributed estimator that uses the full data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arroyo, J., Hou E.: Efficient distributed estimation of inverse covariance matrices. In: 2016 IEEE Statistical Signal Processing Workshop (SSP), pp. 1–5. IEEE (2016)

  • Battey, H., Fan, J., Liu, H., Lu, J., Zhu, Z.: Distributed testing and estimation under sparse high dimensional models. Ann. Stat. 46(3), 1352–1382 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T., Liu, W., Luo, X.: A constrained \(\ell _1\) minimization approach to sparse precision matrix estimation. J. Am. Stat. Assoc. 106(494), 594–607 (2011)

    Article  MATH  Google Scholar 

  • Cai, T., Liu, W., Zhou, H.: Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation. Ann. Stat. 44(2), 455–488 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cardoso-Cachopo, A.: Improving methods for single-label text categorization. PhD Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2007)

  • Dumais, S.T.: Improving the retrieval of information from external sources. Behav. Res. Methods, Instruments, & Comput. 23(2), 229–236 (1991)

    Article  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  • Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical models. Biometrika 98(1), 1–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh, C.J., Sustik, M.A., Dhillon, I.S., Ravikumar, P.: Quic: quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res. 15(1), 2911–2947 (2014)

    MathSciNet  MATH  Google Scholar 

  • Jankova, J., van de Geer, S.: Confidence intervals for high-dimensional inverse covariance estimation. Electron. J. Statistics 9(1), 1205–1229 (2015)

  • Kallenberg, O.: Foundations of modern probability, vol. 2. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Lee, J.D., Liu, Q., Sun, Y., Taylor, J.E.: Communication-efficient sparse regression. J. Mach. Learn. Res. 18(1), 115–144 (2017)

    MathSciNet  MATH  Google Scholar 

  • Liu, D., Liu, R.Y., Xie, M.: Multivariate meta-analysis of heterogeneous studies using only summary statistics: efficiency and robustness. J. Am. Stat. Assoc. 110(509), 326–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • McMahan, B., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

  • Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ravikumar, P., Wainwright, M.J., Raskutti, G., Yu, B.: High-dimensional covariance estimation by minimizing \(\ell _1\)-penalized log-determinant divergence. Electron. J. Statistics 5, 935–980 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, L., Zhou, L., Song, P.X.K.: Distributed simultaneous inference in generalized linear models via confidence distribution. J. Multivar. Anal. 176, 104567 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, G.P., Cui, H.J.: Efficient distributed estimation of high-dimensional sparse precision matrix for transelliptical graphical models. Acta Mathematica Sinica, English Series 37(5), 689–706 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H.: Coordinate descent algorithm for covariance graphical lasso. Stat. Comput. 24(4), 521–529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Ren, X., Gu, Q.: Precision matrix estimation in high dimensional Gaussian graphical models with faster rates. In: Artificial Intelligence and Statistics, pp. 177–185 (2016)

  • Xie, M., Singh, K., Strawderman, W.E.: Confidence distributions and a unifying framework for meta-analysis. J. Am. Stat. Assoc. 106(493), 320–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, G., Shang, Z., Cheng, G.: Distributed generalized cross-validation for divide-and-conquer kernel ridge regression and its asymptotic optimality. J. Comput. Graph. Stat. 28(4), 891–908 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, J., Liang, F.: Double-parallel Monte Carlo for Bayesian analysis of big data. Stat. Comput. 29(1), 23–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, T., Zou, H.: Sparse precision matrix estimation via lasso penalized D-trace loss. Biometrika 101(1), 103–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Duchi, J., Wainwright, M.: Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates. J. Mach. Learn. Res. 16(1), 3299–3340 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Pircalabelu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 484 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezakati, E., Pircalabelu, E. Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models. Stat Comput 33, 47 (2023). https://doi.org/10.1007/s11222-023-10211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10211-9

Keywords

Navigation