Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Prob. 33(12), 124007 (2017)
MathSciNet
MATH
Article
Google Scholar
Arridge, S., Maass, P., Öktem, O., Schönlieb, C.B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)
MathSciNet
MATH
Article
Google Scholar
Balsiger, F., Konar, A.S., Chikop, S., Chandran, V., Scheidegger, O., Geethanath, S., Reyes, M.: Magnetic resonance fingerprinting reconstruction via spatiotemporal convolutional neural networks. In: Knoll, F., Maier, A.K., Rueckert, D. (eds.) Machine Learning for Medical Image Reconstruction—First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11074, pp. 39–46. Springer (2018)
Barbieri, M., Brizi, L., Giampieri, E., Solera, F., Castellani, G., Testa, C., Remondini, D.: Circumventing the Curse of Dimensionality in Magnetic Resonance Fingerprinting through a Deep Learning Approach. arXiv:1811.11477 [physics] (2018)
Bardenet, R., Doucet, A., Holmes, C.: Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach. In: International Conference on Machine Learning (ICML). Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, China, pp. 405–413 (2014)
Bernard-Michel, C., Douté, S., Gardes, L., Girard, S.: Estimation of Mars surface physical properties from hyperspectral images using sliced inverse regression (2007)
Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L., Girard, S.: Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression. J. Geophys. Res. Planets 114(E6), E06005 (2009)
Article
Google Scholar
Bertrand, C., Ohmi, M., Suzuki, R., Kado, H.: A probabilistic solution to the MEG inverse problem via MCMC methods: the reversible jump and parallel tempering algorithms. IEEE Trans. Biomed. Eng. 48(5), 533–542 (2001)
Article
Google Scholar
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)
MathSciNet
MATH
Article
Google Scholar
Carreira-Perpinan, M.: Mode-finding for mixtures of Gaussian distributions. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1318–1323 (2000)
Article
Google Scholar
Ceamanos, X., Douté, S., Fernando, J., Schmidt, F., Pinet, P., Lyapustin, A.: Surface reflectance of Mars observed by CRISM/MRO: 1. Multi-angle approach for retrieval of surface reflectance from CRISM observations (MARS-ReCO). J. Geophys. Res. Planets 118(3), 514–533 (2013)
Article
Google Scholar
Chiancone, A., Forbes, F., Girard, S.: Student sliced inverse regression. Comput. Stat. Data Anal. 113, 441–456 (2017)
MathSciNet
MATH
Article
Google Scholar
Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting deep reconstruction network (DRONE). Magn. Reson. Med. 80(3), 885–894 (2018)
Article
Google Scholar
Cook, R.D., Forzani, L.: Partial least squares prediction in high-dimensional regression. Ann. Stat. 47(2), 884–908 (2019)
MathSciNet
MATH
Article
Google Scholar
Darvishzadeh, R., Matkan, A.A., Ahangar, A.D.: Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5(4), 1222–1230 (2012)
Article
Google Scholar
Deleforge, A., Forbes, F., Ba, S., Horaud, R.: Hyper-spectral image analysis with partially-latent regression and spatial Markov dependencies. IEEE J. Select. Top. Signal Process. 9(6), 1037–1048 (2015)
Article
Google Scholar
Deleforge, A., Forbes, F., Horaud, R.: High-dimensional regression with gaussian mixtures and partially-latent response variables. Stat. Comput. 25(5), 893–911 (2015)
MathSciNet
MATH
Article
Google Scholar
Douté, S., Pilorget, C.: Physical state and temporal evolution of icy surfaces in the Mars South Pole. Eur. Planet. Sci. Congress 11, EPSC2017-491 (2017)
Google Scholar
Fernando, J., Schmidt, F., Douté, S.: Martian surface microtexture from orbital CRISM multi-angular observations: a new perspective for the characterization of the geological processes. Planet Space Sci. 128, 30–51 (2016)
Article
Google Scholar
Frau-Pascual, A., Vincent, T., Sloboda, J., Ciuciu, P., Forbes, F.: Physiologically Informed Bayesian Analysis of ASL fMRI Data. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D. Ribbens, A. (eds.) Bayesian and Graphical Models for Biomedical Imaging, Lecture Notes in Computer Science, pp. 37–48. Springer (2014)
Giovannelli, J.F., Idier, J.: Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing. Wiley, New York (2015)
Book
Google Scholar
Golbabaee, M., Chen, D., Gómez, P.A., Menzel, M.I., Davies, M.: Geometry of deep learning for magnetic resonance fingerprinting. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2019, pp. 7825–7829 (2019)
Hapke, B.: Bidirectional reflectance spectroscopy. I—Theory. J. Geophys. Res. 86, 3039–3054 (1981)
Article
Google Scholar
Hapke, B.: Bidirectional reflectance spectroscopy. III—Correction for macroscopic roughness. Icarus 59, 41–59 (1984)
Article
Google Scholar
Hapke, B.: Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus 67(2), 264–280 (1986)
Article
Google Scholar
Hennig, C.: Methods for merging Gaussian mixture components. Adv. Data Anal. Classif. 4(1), 3–34 (2010)
MathSciNet
MATH
Article
Google Scholar
Hoffman, M.D., Gelman, A.: The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. arXiv:1111.4246 [cs, stat] (2011)
Hoppe, E., Körzdörfer, G., Würfl, T., Wetzl, J., Lugauer, F., Pfeuffer, J., Maier, A.: Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. Stud. Health Technol. Inf. 243, 202–206 (2017)
Google Scholar
Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004)
Article
Google Scholar
Ingrassia, S., Minotti, S.C., Vittadini, G.: Local statistical modeling via a cluster-weighted approach with elliptical distributions. J. Classif. 29(3), 363–401 (2012)
MathSciNet
MATH
Article
Google Scholar
Izbicki, R., Lee, A.B., Pospisil, T.: ABC-CDE: toward approximate bayesian computation with complex high-dimensional data and limited simulations. J. Comput. Graph. Stat. 28(3), 481–492 (2019)
MathSciNet
MATH
Article
Google Scholar
Lathuiliere, S., Juge, R., Mesejo, P., Munoz-Salinas, R., Horaud, R.: Deep mixture of linear inverse regressions applied to head-pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4817–4825 (2017)
Lemasson, B., Pannetier, N., Coquery, N., Boisserand, L.S.B., Collomb, N., Schuff, N., Moseley, M., Zaharchuk, G., Barbier, E.L., Christen, T.: MR vascular fingerprinting in stroke and brain tumors models. Sci. Rep. 6, 37071 (2016)
Article
Google Scholar
Li, K.C.: Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86(414), 316–327 (1991)
MathSciNet
MATH
Article
Google Scholar
Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J.L., Duerk, J.L., Griswold, M.A.: Magnetic resonance fingerprinting. Nature 495(7440), 187–192 (2013)
Article
Google Scholar
Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A stochastic newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), A1460–A1487 (2012)
MathSciNet
MATH
Article
Google Scholar
Mesejo, P., Saillet, S., David, O., Bénar, C., Warnking, J.M., Forbes, F.: A differential evolution-based approach for fitting a nonlinear biophysical model to fMRI BOLD data. IEEE J. Select. Top. Signal Process. 10(2), 416–427 (2016)
Article
Google Scholar
Murchie, S.L., Seelos, F.P., Hash, C.D., Humm, D.C., Malaret, E., McGovern, J.A., Choo, T.H., Seelos, K.D., Buczkowski, D.L., Morgan, M.F., Barnouin-Jha, O.S., Nair, H., Taylor, H.W., Patterson, G.W., Harvel, C.A., Mustard, J.F., Arvidson, R.E., McGuire, P., Smith, M.D., Wolff, M.J., Titus, T.N., Bibring, J.P., Poulet, F.: Compact reconnaissance imaging spectrometer for Mars investigation and data set from the mars reconnaissance orbiters primary science phase. J. Geophys. Res. Planets 114(E2), E00D07 (2009)
Google Scholar
Nataraj, G., Nielsen, J.F., Scott, C., Fessler, J.A.: Dictionary-free MRI PERK: parameter estimation via regression with kernels. IEEE Trans. Med. Imaging 37(9), 2103–2114 (2018)
Article
Google Scholar
Nguyen, H.D., Chamroukhi, F., Forbes, F.: Approximation results regarding the multiple-output Gaussian gated mixture of linear experts model. Neurocomputing 366, 208–214 (2019)
Article
Google Scholar
Perthame, E., Forbes, F., Deleforge, A.: Inverse regression approach to robust nonlinear high-to-low dimensional mapping. J. Multivar. Anal. 163, 1–14 (2018)
MathSciNet
MATH
Article
Google Scholar
Pilorget, C., Fernando, J., Ehlmann, B.L., Schmidt, F., Hiroi, T.: Wavelength dependence of scattering properties in the VIS-NIR and links with grain-scale physical and compositional properties. Icarus 267, 296–314 (2016)
Article
Google Scholar
Potin, S., Beck, P., Schmitt, B., Moynier, F.: Some things special about NEAs: geometric and environmental effects on the optical signatures of hydration. Icarus 333, 415–428 (2019)
Article
Google Scholar
Raftery, A.E., Bao, L.: Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics 66(4), 1162–1173 (2010)
MathSciNet
MATH
Article
Google Scholar
Ray, S., Lindsay, B.G.: The topography of multivariate normal mixtures. Ann. Stat. 33(5), 2042–2065 (2005)
MathSciNet
MATH
Article
Google Scholar
Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics, 2nd edn. Springer, New York (2004)
MATH
Book
Google Scholar
Runnalls, A.: Kullback–Leibler approach to Gaussian mixture reduction. IEEE Trans. Aerosp. Electron. Syst. 43, 989–999 (2007)
Article
Google Scholar
Schmidt, F., Fernando, J.: Realistic uncertainties on Hapke model parameters from photometric measurement. Icarus 260, 73–93 (2015)
Article
Google Scholar
Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Computation. CRC Press, Boca Raton (2018)
MATH
Book
Google Scholar
Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)
MathSciNet
MATH
Article
Google Scholar
Song, P., Eldar, Y.C., Mazor, G., Rodrigues, M.R.D.: HYDRA: hybrid deep magnetic resonance fingerprinting. Med. Phys. 46(11), 4951–4969 (2019)
Article
Google Scholar
Steele, R.J., Raftery, A.E., Emond, M.J.: Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS). J. Comput. Graph. Stat. 15(3), 712–734 (2006)
MathSciNet
Article
Google Scholar
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations, ICLR 2014 (2014)
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (2005)
Tarantola, A., Valette, B., et al.: Inverse problems quest for information. J. Geophys. 50(1), 159–170 (1982)
Google Scholar
Tu, C.C., Forbes, F., Lemasson, B., Wang, N.: Prediction with high dimensional regression via hierarchically structured Gaussian mixtures and latent variables. J. R. Stat. Soc. Ser. C Appl. Stat. 68(5), 1485–1507 (2019)
MathSciNet
Article
Google Scholar
Virtue, P., Yu, S.X., Lustig, M.: Better than real: complex-valued neural nets for MRI fingerprinting. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3953–3957 (2017)
Zhao, B., Setsompop, K., Ye, H., Cauley, S.F., Wald, L.L.: Maximum likelihood reconstruction for magnetic resonance fingerprinting. IEEE Trans. Med. Imaging 35(8), 1812–1823 (2016)
Article
Google Scholar