Akeret, J., Seehars, S., Amara, A., Refregier, A., Csillaghy, A.: Cosmohammer: cosmological parameter estimation with the MCMC hammer. Astron. Comput. 2, 27–39 (2013)
Article
Google Scholar
Beskos, A., Girolami, M., Lan, S., Farrell, P.E., Stuart, A.M.: Geometric MCMC for infinite-dimensional inverse problems. J. Comput. Phys. 335, 327–351 (2017)
MathSciNet
Article
Google Scholar
Beskos, A., Jasra, A., Law, K., Marzouk, Y., Zhou, Y.: Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals. SIAM/ASA J. Uncertain. Quantif. 6(2), 762–786 (2018)
MathSciNet
Article
Google Scholar
Beskos, A., Roberts, G., Stuart, A., Voss, J.: MCMC methods for diffusion bridges. Stoch. Dyn. 8(03), 319–350 (2008)
MathSciNet
Article
Google Scholar
Chen, Y., Keyes, D., Law, K.J., Ltaief, H.: Accelerated dimension-independent adaptive Metropolis. SIAM J. Sci. Comput. 38(5), S539–S565 (2016)
MathSciNet
Article
Google Scholar
Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. **424–446 (2013)
Coullon, J., Pokern, Y.: MCMC for a hyperbolic Bayesian inverse problem in traffic flow modelling (2020). arXiv:2001.02013
Cui, T., Law, K.J., Marzouk, Y.M.: Dimension-independent likelihood-informed MCMC. J. Comput. Phys. 304, 109–137 (2016)
MathSciNet
Article
Google Scholar
Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Probl. 30(11), 114015 (2014)
MathSciNet
Article
Google Scholar
Dunlop, M.M., Stuart, A.M.: The Bayesian formulation of EIT: analysis and algorithms. Inverse Probl. Imaging 10(4), 1007–1036 (2016)
MathSciNet
Article
Google Scholar
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125(925), 306 (2013)
Article
Google Scholar
Goodman, J., Weare, J.: Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5(1), 65–80 (2010)
MathSciNet
Article
Google Scholar
Hairer, M., Stuart, A.M., Vollmer, S.J., et al.: Spectral gaps for a metropolis-hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)
MathSciNet
Article
Google Scholar
Hu, Z., Yao, Z., Li, J.: On an adaptive preconditioned Crank–Nicolson MCMC algorithm for infinite dimensional Bayesian inference. J. Comput. Phys. 332, 492–503 (2017)
Iglesias, M.A., Lin, K., Stuart, A.M.: Well-posed Bayesian geometric inverse problems arising in subsurface flow. Inverse Probl. 30(11), 114001 (2014). https://doi.org/10.1088/0266-5611/30/11/114001
Kantas, N., Beskos, A., Jasra, A.: Sequential Monte Carlo methods for high-dimensional inverse problems: a case study for the Navier–Stokes equations. SIAM/ASA J. Uncertain. Quantif. 2(1), 464–489 (2014)
MathSciNet
Article
Google Scholar
Law, K.J.: Proposals which speed up function-space MCMC. J. Comput. Appl. Math. 262, 127–138 (2014)
MathSciNet
Article
Google Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)
Article
Google Scholar
Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)
MathSciNet
Article
Google Scholar
Rudolf, D., Sprungk, B.: On a generalization of the preconditioned Crank–Nicolson Metropolis algorithm. Found. Comput. Math. 18(2), 309–343 (2018)
MathSciNet
Article
Google Scholar
Sokal, A.: Monte Carlo methods in statistical mechanics: Foundations and new algorithms. In: Functional Integration, pp. 131–192. Springer (1997)
Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451 (2010)
MathSciNet
Article
Google Scholar
Zhou, Q., Hu, Z., Yao, Z., Li, J.: A hybrid adaptive MCMC algorithm in function spaces. SIAM/ASA J. Uncertain. Quantifi. 5(1), 621–639 (2017)
MathSciNet
Article
Google Scholar