Amari, S.: Information Geometry and Its Applications. Springer, Japan (2016)
MATH
Google Scholar
Bouveyron, C., Girard, S., Schmid, C.: High-dimensional data clustering. Comput. Stat. Data Anal. 52, 502–519 (2007)
MathSciNet
MATH
Google Scholar
Buhlmann, P., Drineas, P., Kane, M., van der Laan, M. (eds.): Handbook of Big Data. CRC Press, Boca Raton (2016)
MATH
Google Scholar
Cappé, O., Moulines, E.: On-line expectation–maximization algorithm for latent data models. J. R. Stat. Soc. B 71, 593–613 (2009)
MathSciNet
MATH
Google Scholar
Celeux, G., Chretien, S., Forbes, F., Mkhadri, A.: A component-wise EM algorithm for mixtures. J. Comput. Graph. Stat. 10, 697–712 (2001)
MathSciNet
Google Scholar
Chau, M., Fu, M.C.: An overview of stochastic approximation. In: Fu, M.C. (ed.) Handbook of Simulation Optimization, pp. 149–178. Springer, New York (2015)
Google Scholar
Chen, H.-F.: Stochastic Approximiation and Its Applications. Kluwer, New York (2003)
Google Scholar
Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Advances in Neural Information Processing Systems, pp. 1647–1655 (2011)
DasGupta, A.: Probability for Statistics and Machine Learning. Springer, New York (2011)
MATH
Google Scholar
Delyon, B., Lavielle, M., Moulines, E.: Counvergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)
MATH
Google Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)
MathSciNet
MATH
Google Scholar
Eddelbuettel, D.: Seamless R and C++ Integration with Rcpp. Springer, New York (2013)
MATH
Google Scholar
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)
Google Scholar
Forbes, C., Evans, M., Hastings, N., Peacock, B.: Statistical Distributions. Wiley, New York (2011)
MATH
Google Scholar
Fraley, C., Raftery, A., Wehrens, R.: Incremental model-based clustering for large datasets with small clusters. J. Comput. Graph. Stat. 14, 529–546 (2005)
Google Scholar
Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math. Program. Ser. A 155, 267–305 (2016)
MathSciNet
MATH
Google Scholar
Han, Z., Hong, M., Wang, D.: Signal Processing and Networking for Big Data Applications. Cambridge University Press, Cambridge (2017)
MATH
Google Scholar
Hardle, W.K., Lu, H.H.-S., Shen, X. (eds.): Handbook of Big Data Analytics. Springer, Cham (2018)
MATH
Google Scholar
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C 28, 100–108 (1979)
MATH
Google Scholar
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
MATH
Google Scholar
Iverson, K.E.: A Programming Language. Wiley, New York (1967)
MATH
Google Scholar
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)
MATH
Google Scholar
Jones, P.N., McLachlan, G.J.: Fitting finite mixture models in a regression context. Aust. J. Stat. 34, 233–240 (1992)
Google Scholar
Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)
MathSciNet
MATH
Google Scholar
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
MathSciNet
MATH
Google Scholar
Kushner, H.J., Yin, G.G.: Stochastic Approximiation and Recursive Algorithms and Applications. Springer, New York (2003)
Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Google Scholar
Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 661–670) (2014)
Liang, F., Zhang, J.: Estimating the false discovery rate using the stochastic approximation algorithm. Biometrika 95, 961–977 (2008)
MathSciNet
MATH
Google Scholar
McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (2008)
MATH
Google Scholar
McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models. Ann. Rev. Stat. Appl. 6, 355–378 (2019)
MathSciNet
Google Scholar
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
MATH
Google Scholar
Melnykov, V., Chen, W.-C., Maitra, R.: MixSim: an R package for simulating data to study performance of clustering algorithms. J. Stat. Softw. 51, 1–25 (2012)
Google Scholar
Ng, S.-K., McLachlan, G.J.: Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images. Pattern Recognit. 37, 1573–1589 (2004)
MATH
Google Scholar
Nguyen, H.D., Chamroukhi, F.: Practical and theoretical aspects of mixture-of-experts modeling: an overview. WIREs Data Min. Knowl. Discov. 8(4), e1246 (2018)
Google Scholar
Nguyen, H.D., Jones, A.T.: Big Data-appropriate clustering via stochastic approximation and Gaussian mixture models. In: Ahmed, M., Pathan, A.-S.K. (eds.) Data Analytics: Concepts, Techniques, and Applications. CRC Press, Boca Raton (2018)
Google Scholar
Nguyen, H.D., McLachlan, G.J.: Maximum likelihood estimation of Gaussian mixture models without matrix operations. Adv. Data Anal. Classif. 9, 371–394 (2015)
MathSciNet
MATH
Google Scholar
Pearson, K.: Contributions to the theory of mathematical evolution. Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894)
MATH
Google Scholar
Polyak, B.T.: A new method of stochastic approximation type. Autom. Remote Control 51, 98–107 (1990)
MathSciNet
Google Scholar
Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30, 838–855 (1992)
MathSciNet
MATH
Google Scholar
Prosperetti, A.: Advanced Mathematics for Applications. Cambridge University Press, Cambridge (2011)
MATH
Google Scholar
R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing (2018)
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
MathSciNet
MATH
Google Scholar
Schubert, E., Koos, A., Emrich, T., Zufle, A., Schmid, K.A., Zimek, A.: A framework for clustering uncertain data. Proc. VLDB Endow. 8, 1976–1979 (2015)
Google Scholar
Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: mclust: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016)
Google Scholar
Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15, 77–87 (2002)
MATH
Google Scholar
White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50, 1–25 (1982)
MathSciNet
MATH
Google Scholar
White, H.: Asymptotic Theory For Econometricians. Academic Press, San Diego (2001)
Google Scholar
Wickham, H., Cook, D., Hofmann, H., Buja, A.: tourr: an R package for exploring multivariate data with projections. J. Stat. Softw. 40, 1–18 (2011)
Google Scholar
Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)
MathSciNet
MATH
Google Scholar
Xu, L., Jordan, M.I., Hinton, G.E.: An alternative model for mixtures of experts. In: Advances in Neural Information Processing Systems, pp. 633–640 (1995)
Zhang, J., Liang, F.: Convergence of stochastic approximation algorithms under irregular conditions. Stat. Neerl. 62, 393–403 (2008)
MathSciNet
MATH
Google Scholar
Zhao, T., Yu, M., Wang, Y., Arora, R., Liu, H.: Accelerated mini-batch randomized block coordinate descent method. In Advances in Neural Information Processing Systems (pp. 3329–3337) (2014)