Skip to main content

Functional single-index quantile regression models

Abstract

It is known that functional single-index regression models can achieve better prediction accuracy than functional linear models or fully nonparametric models, when the target is to predict a scalar response using a function-valued covariate. However, the performance of these models may be adversely affected by extremely large values or skewness in the response. In addition, they are not able to offer a full picture of the conditional distribution of the response. Motivated by using trajectories of \(\hbox {PM}_{{10}}\) concentrations of last day to predict the maximum \(\hbox {PM}_{{10}}\) concentration of the current day, a functional single-index quantile regression model is proposed to address those issues. A generalized profiling method is employed to estimate the model. Simulation studies are conducted to investigate the finite sample performance of the proposed estimator. We apply the proposed framework to predict the maximal value of \(\hbox {PM}_{{10}}\) concentrations based on the intraday \(\hbox {PM}_{{10}}\) concentrations of the previous day.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ait-Saïdi, A., Ferraty, F., Kassa, R., Vieu, P.: Cross-validated estimations in the single-functional index model. Statistics 42(6), 475–494 (2008)

    MathSciNet  MATH  Google Scholar 

  • Berrocal, V.J., Gelfand, A.E., Holland, D.M.: A spatio-temporal downscaler for output from numerical models. J. Agric. Biol. Environ. Stat. 15(2), 176–197 (2010)

    MathSciNet  MATH  Google Scholar 

  • Burba, F., Ferraty, F., Vieu, P.: k-nearest neighbour method in functional nonparametric regression. J. Nonparametr. Stat. 21(4), 453–469 (2009)

    MathSciNet  MATH  Google Scholar 

  • Cardot, H., Crambes, C., Sarda, P.: Quantile regression when the covariates are functions. Nonparametr. Stat. 17(7), 841–856 (2005)

    MathSciNet  MATH  Google Scholar 

  • Chaloulakou, A., Grivas, G., Spyrellis, N.: Neural network and multiple regression models for PM\(_{10}\) prediction in Athens: a comparative assessment. J. Air Waste Manag. Assoc. 53(10), 1183–1190 (2003)

    Google Scholar 

  • Chen, D., Hall, P., Müller, H.-G.: Single and multiple index functional regression models with nonparametric link. Ann. Stat. 39(3), 1720–1747 (2011)

    MathSciNet  MATH  Google Scholar 

  • Chen, K., Müller, H.-G.: Conditional quantile analysis when covariates are functions, with application to growth data. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 74(1), 67–89 (2012)

    MathSciNet  MATH  Google Scholar 

  • Dai, X., Müller, H.-G., Yao, F.: Optimal Bayes classifiers for functional data and density ratios. Biometrika 104(3), 545–560 (2017)

    MathSciNet  MATH  Google Scholar 

  • Delaigle, A., Hall, P.: Achieving near perfect classification for functional data. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 74(2), 267–286 (2012)

    MathSciNet  MATH  Google Scholar 

  • Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York (2006)

    MATH  Google Scholar 

  • Ferraty, F., Rabhi, A., Vieu, P.: Conditional quantiles for dependent functional data with application to the climatic El Niño phenomenon. Sankhyā: Indian J. Stat. 67, 378–398 (2005)

    MATH  Google Scholar 

  • Ferraty, F., Keilegom, I.V., Vieu, P.: On the validity of the bootstrap in non-parametric functional regression. Scand. J. Stat. 37(2), 286–306 (2010)

    MathSciNet  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O.: A neural network forecast for daily average PM\(_{10}\) concentrations in Belgium. Atmos. Environ. 39(18), 3279–3289 (2005)

    Google Scholar 

  • Hörmann, S., Kidziński, Ł., Hallin, M.: Dynamic functional principal components. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 77(2), 319–348 (2015)

    MathSciNet  MATH  Google Scholar 

  • Horowitz, J.L.: Semiparametric and Nonparametric Methods in Econometrics. Springer, New York (2009)

    MATH  Google Scholar 

  • James, G.M.: Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(3), 411–432 (2002)

    MathSciNet  MATH  Google Scholar 

  • Kato, K.: Estimation in functional linear quantile regression. Ann. Stat. 40(6), 3108–3136 (2012)

    MathSciNet  MATH  Google Scholar 

  • Kimeldorf, G., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33(1), 82–95 (1971)

    MathSciNet  MATH  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81(4), 673–680 (1994)

    MathSciNet  MATH  Google Scholar 

  • Li, Y., Liu, Y., Zhu, J.: Quantile regression in reproducing kernel Hilbert spaces. J. Am. Stat. Assoc. 102(477), 255–268 (2007)

    MathSciNet  MATH  Google Scholar 

  • Müller, H.-G., Stadtmüller, U.: Generalized functional linear models. Ann. Stat. 33(2), 774–805 (2005)

    MathSciNet  MATH  Google Scholar 

  • Müller, H.-G., Yao, F.: Functional additive models. J. Am. Stat. Assoc. 103(484), 1534–1544 (2008)

    MathSciNet  MATH  Google Scholar 

  • Müller, H.-G., Wu, Y., Yao, F.: Continuously additive models for nonlinear functional regression. Biometrika 100(3), 607–622 (2013)

    MathSciNet  MATH  Google Scholar 

  • Nychka, D., Gray, G., Haaland, P., Martin, D., O’connell, M.: A nonparametric regression approach to syringe grading for quality improvement. J. Am. Stat. Assoc. 90(432), 1171–1178 (1995)

    MATH  Google Scholar 

  • Osowski, S., Garanty, K.: Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intell. 20(6), 745–755 (2007)

    Google Scholar 

  • Perez, P., Reyes, J.: Prediction of maximum of 24-h average of PM10 concentrations 30 h in advance in Santiago, Chile. Atmos. Environ. 36(28), 4555–4561 (2002)

    Google Scholar 

  • Perez, P., Reyes, J.: An integrated neural network model for PM10 forecasting. Atmos. Environ. 40(16), 2845–2851 (2006)

    Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017)

  • Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  • Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc. B 69(5), 741–796 (2007)

    MathSciNet  Google Scholar 

  • Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106(493), 6–20 (2011)

    MathSciNet  MATH  Google Scholar 

  • Reiss, P.T., Goldsmith, J., Shang, H.L., Ogden, R.T.: Methods for scalar-on-function regression. Int. Stat. Rev. 85(2), 228–249 (2017)

    MathSciNet  Google Scholar 

  • Sahu, S.K., Gelfand, A.E., Holland, D.M.: High-resolution space-time ozone modeling for assessing trends. J. Am. Stat. Assoc. 102(480), 1221–1234 (2007)

    MathSciNet  MATH  Google Scholar 

  • Shang, H.: ftsa: functional time series analysis. R package version 5.5(2019)

  • Stone, C.J.: Additive regression and other nonparametric models. Ann. Stat. 13(2), 689–705 (1985)

    MathSciNet  MATH  Google Scholar 

  • Wahba, G.: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13(4), 1378–1402 (1985)

    MathSciNet  MATH  Google Scholar 

  • Yuan, M.: GACV for quantile smoothing splines. Comput. Stat. Data Anal. 50(3), 813–829 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguo Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11222_2019_9917_MOESM1_ESM.pdf

A supplementary document includes additional simulation study results and real data results. The R codes for the application and simulation studies are also available at https://github.com/caojiguo/FunSIQ. (pdf 122 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sang, P., Cao, J. Functional single-index quantile regression models. Stat Comput 30, 771–781 (2020). https://doi.org/10.1007/s11222-019-09917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09917-6

Keywords

  • Functional data analysis
  • Generalized profiling
  • Quantile regression
  • Robustness
  • Single-index model