Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37(2), 697–725 (2009)
MathSciNet
MATH
Article
Google Scholar
Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B 72(3), 269–342 (2010)
MathSciNet
MATH
Article
Google Scholar
Brix, A.F., Lunde, A., Wei, W.: A general Schwartz model for energy spot price—estimation using a particle MCMC method. Energy Econ. 72, 560–582 (2018)
Article
Google Scholar
Carter, C., Kohn, R.: Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika 83(3), 589–601 (1996)
MathSciNet
MATH
Article
Google Scholar
Chib, S., Pitt, M.K., Shephard, N.: Likelihood based inference for diffusion driven models. Working Paper (2004)
Chib, S., Nardari, F., Shephard, N.: Analysis of high dimensional multivariate stochastic volatility models. J. Econom. 134(2), 341–371 (2006)
MathSciNet
MATH
Article
Google Scholar
Dahlin, J., Lindsten, F., Schön, T.: Particle Metropolis–Hastings using gradient and Hessian information. Stat. Comput. 25(1), 81–92 (2015)
MathSciNet
MATH
Article
Google Scholar
Deligiannidis, G., Doucet, A., Pitt, M.K.: The correlated pseudo-marginal method. J. R. Stat. Soc. Ser. B 80(5), 839–870 (2018)
MathSciNet
MATH
Article
Google Scholar
Douc, R., Cappé, O.: Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. ISPA 2005, pp. 64–69. IEEE (2005)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)
Article
Google Scholar
Durbin, J., Koopman, S.: Time Series Analysis of State Space Methods, second edn. Oxford University Press, Oxford (2012)
MATH
Book
Google Scholar
Fearnhead, P., Meligkotsidou, L.: Augmentation schemes for particle MCMC. Stat. Comput. 26(6), 1293–1306 (2016)
MathSciNet
MATH
Article
Google Scholar
Gerlach, R., Carter, C., Kohn, R.: Efficient Bayesian inference for dynamic mixture models. J. Am. Stat. Assoc. 95(451), 819–828 (2000)
MathSciNet
MATH
Article
Google Scholar
Godsill, S., Doucet, A., West, M.: Monte Carlo smoothing for nonlinear time series. J. Am. Stat. Assoc. 99(465), 156–168 (2004)
MathSciNet
MATH
Article
Google Scholar
Guo, D., Wang, X., Chen, R.: New sequential Monte Carlo methods for nonlinear dynamic systems. Stat. Comput. 15(2), 135–147 (2005)
MathSciNet
Article
Google Scholar
Ignatieva, K., Rodrigues, P., Seeger, N.: Empirical analysis of affine versus nonaffine variance specifications in jump-diffusion models for equity indices. J. Bus. Econ. Stat. 33(1), 68–75 (2015)
MathSciNet
Article
Google Scholar
Kastner, G., Fruhwirth-Schnatter, S., Lopes, H.F.: Efficient Bayesian inference for multivariate factor stochastic volatility models. J. Comput. Graph. Stat. 26(4), 905–917 (2017)
MathSciNet
Article
Google Scholar
Kim, S., Shephard, N., Chib, S.: Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econ. Stud. 65(3), 361–393 (1998)
MATH
Article
Google Scholar
Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)
MathSciNet
Google Scholar
Kleppe, T.S., Yu, J., Skaug, H.: Estimating the GARCH diffusion: simulated maximum likelihood in continuous time. SMU Economics and Statistics Working Paper Series, p. 13 (2010)
Lindsten, F., B. Schön, T.: On the use of backward simulation in particle Markov chain Monte Carlo methods. arxiv:1110.2873 (2012a)
Lindsten, F., Schön, T.B.: On the use of backward simulation in the particle Gibbs sampler. In: Proceedings of the 37th International Conference on Acoustics, Speech, and Signal Processing, pp. 3845–3848. ICASSP (2012b)
Lindsten, F., Schon, T.B.: Backward simulation methods for Monte Carlo statistical inference. Found. Trends Mach. Learn. 6(1), 1–143 (2013)
MATH
Article
Google Scholar
Lindsten, F., Jordan, M.I., Schön, T.B.: Particle Gibbs with ancestor sampling. J. Mach. Learn. Res. 15, 2145–2184 (2014)
MathSciNet
MATH
Google Scholar
Lindsten, F., Bunch, P., Singh, S.S., Schön, T.B.: Particle ancestor sampling for near-degenerate or intractable state transition models. arxiv:1505.0635v1 (2015)
Nemeth, C., Fearnhead, P., Mihaylova, L.: Particle approximations of the score and observed information matrix for parameter estimation in state-space models with linear computational cost. J. Comput. Graph. Stat. 25(4), 1138–1157 (2016a)
MathSciNet
Article
Google Scholar
Nemeth, C., Sherlock, C., Fearnhead, P.: Particle Metropolis-adjusted Langevin algorithms. Biometrika 103(3), 701–717 (2016b)
MathSciNet
MATH
Article
Google Scholar
Olsson, J., Ryden, T.: Rao-Blackwellization of particle Markov chain Monte Carlo methods using forward filtering backward sampling. IEEE Trans. Signal Process. 59(10), 4606–4619 (2011)
MathSciNet
MATH
Article
Google Scholar
Pitt, M.K., Silva, RdS, Giordani, P., Kohn, R.: On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171(2), 134–151 (2012)
MathSciNet
MATH
Article
Google Scholar
Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)
MathSciNet
Article
Google Scholar
Stein, E., Stein, J.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991)
MATH
Article
Google Scholar
Stramer, O., Bognar, M.: Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach. Bayesian Anal. 6(2), 231–258 (2011)
MathSciNet
MATH
Article
Google Scholar
Van Der Merwe, R., Doucet, A., De Freitas, N., Wan, E.: The unscented particle filter. Advances in neural information processing systems, pp. 584–590 (2001)
Wu, X., Zhou, G., Wang, S.: Estimation of market prices of risks in the G.A.R.C.H. diffusion model. Economic Research-Ekonomska Istraživanja 31(1), 15–36 (2018)
Article
Google Scholar