Parsimonious periodic autoregressive models for time series with evolving trend and seasonality

Abstract

This paper proposes an extension of Periodic AutoRegressive (PAR) modelling for time series with evolving features. The large scale of modern datasets, in fact, implies that the time span may subtend several evolving patterns of the underlying series, affecting also seasonality. The proposed model allows several regimes in time and a possibly different PAR process with a trend term in each regime. The means, autocorrelations and residual variances may change both with the regime and the season, resulting in a very large number of parameters. Therefore as a second step we propose a grouping procedure on the PAR parameters, in order to obtain a more parsimonious and concise model. The model selection procedure is a complex combinatorial problem, and it is solved basing on genetic algorithms that optimize an information criterion. The model is tested in both simulation studies and real data analysis from different fields, proving to be effective for a wide range of series with evolving features, and competitive with respect to more specific models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Downloaded from http://dati-congiuntura.istat.it/.

  2. 2.

    Downloaded from http://www.metoffice.gov.uk/hadobs/hatcet/data/download.html.

  3. 3.

    Downloaded from http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/MHSETS.zip.

References

  1. Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes. Econometrica 66(1), 47–78 (1998)

    MathSciNet  Article  Google Scholar 

  2. Baragona, R., Battaglia, F., Cucina, D.: Fitting piecewise linear threshold autoregressive models by means of genetic algorithms. Comput. Stat. Data Anal. 47(2), 277–295 (2004)

    MathSciNet  Article  Google Scholar 

  3. Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures. Springer, Berlin (2011)

    Google Scholar 

  4. Battaglia, F., Protopapas, M.K.: Multi-regime models for nonlinear nonstationary time series. Comput. Stat. 27(2), 319–341 (2012)

    MathSciNet  Article  Google Scholar 

  5. Battaglia, F., Cucina, D., Rizzo, M.: A generalization of periodic autoregressive models for seasonal time series. Tech. Rep. 2, Department of Statistical Sciences, University La Sapienza, Rome, Italy, ISSN 2279-798X (2018)

  6. Bodo, G., Cividini, A., Signorini, L.F.: Forecasting the italian industrial production index in real time. J. Forecast. 10(3), 285–299 (1991)

    Article  Google Scholar 

  7. Box, G.E.P.: Science and statistics. J. Am. Stat. Assoc. 71(356), 791–799 (1976)

    MathSciNet  Article  Google Scholar 

  8. Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B 37(2), 149–192 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Bruno, G., Lupi, C.: Forecasting industrial production and the early detection of turning points. Empir. Econ. 29(3), 647–671 (2004)

    Article  Google Scholar 

  10. Bulligan, G., Golinelli, R., Parigi, G.: Forecasting monthly industrial production in real-time: from single equations to factor-based models. Empir. Econ. 39(2), 303–336 (2010)

    Article  Google Scholar 

  11. Caporale, G., Cunado, J., Gil-Alana, L.A.: Deterministic versus stochastic seasonal fractional integration and structural breaks. Stat. Comput. 22(2), 349–358 (2012)

    MathSciNet  Article  Google Scholar 

  12. Chatterjee, S., Laudato, M., Lynch, L.A.: Genetic algorithms and their statistical applications: an introduction. Comput. Stat. Data Anal. 22(6), 633–651 (1996)

    Article  Google Scholar 

  13. Cucina, D., Rizzo, M., Ursu, E.: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis (2018). arXiv:1801.01697

  14. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Structural break estimation for nonstationary time series models. J. Am. Stat. Assoc. 101(473), 223–239 (2006)

    MathSciNet  Article  Google Scholar 

  15. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Break detection for a class of nonlinear time series models. J. Time Ser. Anal. 29(5), 834–867 (2008)

    MathSciNet  Article  Google Scholar 

  16. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Chichester (1998)

    Google Scholar 

  17. Franses, P.H.: The effects of seasonally adjusting a periodic autoregressive process. Comput. Stat. Data Anal. 19(6), 683–704 (1995)

    MathSciNet  Article  Google Scholar 

  18. Franses, P.H., Paap, R.: Periodic Time Series Models. Oxford University Press, New York (2004)

    Google Scholar 

  19. Girardi, A., Guardabascio, B., Ventura, M.: Factor-augmented bridge models (FABM) and soft indicators to forecast italian industrial production. J. Forecast. 35(6), 542–552 (2016)

    MathSciNet  Article  Google Scholar 

  20. Gladyshev, E.: Periodically correlated random sequence. Sov. Math. 2, 385–388 (1961)

    MATH  Google Scholar 

  21. Hipel, K.W., McLeod, A.I.: Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam (1994)

    Google Scholar 

  22. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)

    Google Scholar 

  23. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  24. Kapetanios, G.: Variable selection in regression models using nonstandard optimisation of information criteria. Comput. Stat. Data Anal. 52(1), 4–15 (2007)

    MathSciNet  Article  Google Scholar 

  25. Kleiber, C., Hornik, K., Leisch, F., Zeileis, A.: strucchange: an R package for testing for structural change in linear regression models. J. Stat. Softw. 7(2), 1–38 (2002)

    Google Scholar 

  26. Kontoghiorghes, E.J.: Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  27. Li, S., Lund, R.: Multiple changepoint detection via genetic algorithm. J. Clim. 25, 674–686 (2012)

    Article  Google Scholar 

  28. Lu, Q., Lund, R.B., Lee, T.C.M.: An MDL approach to the climate segmentation problem. Ann. Appl. Stat. 4(1), 299–319 (2010)

    MathSciNet  Article  Google Scholar 

  29. Noakes, D.J., McLeod, A.I., Hipel, K.W.: Forecasting monthly riverflow time series. Int. J. Forecast. 1(2), 179–190 (1985)

    Article  Google Scholar 

  30. Ploberger, W., Krämer, W.: The CUSUM test with OLS residuals. Econometrica 60(2), 271–285 (1992)

    MathSciNet  Article  Google Scholar 

  31. Proietti, T., Hillebrand, E.: Seasonal changes in Central England temperatures. J. R. Stat. Soc. Ser A 180(3), 769–791 (2017)

    MathSciNet  Article  Google Scholar 

  32. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  33. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Wiley, New York (1993)

    Google Scholar 

  34. Sin, C.Y., White, H.: Information criteria for selecting possibly misspecified parametric models. J. Econom. 71(1–2), 207–225 (1996)

    MathSciNet  Article  Google Scholar 

  35. So, M.K.P., Chung, R.S.W.: Dynamic seasonality in time series. Comput. Stat. Data Anal. 70, 212–226 (2014)

    MathSciNet  Article  Google Scholar 

  36. Teräsvirta, T.: Specification, estimation and evaluation of smooth transition autoregressive models. J. Am. Stat. Assoc. 89(425), 208–218 (1994)

    MATH  Google Scholar 

  37. Thompstone, R.M., Hipel, K.W., McLeod, A.I.: Grouping of periodic autoregressive models. In: Anderson, O.D., Ord, J.K., Robinson, E.A. (eds.) Time Series Analysis: Theory and Practice 6. Proceedings Conference Toronto 1983, North-Holland, Amsterdam, pp. 35–49 (1985)

  38. Tong, H.: Non Linear Time Series: A Dynamical System Approach. Oxford University Press, Oxford (1990)

    Google Scholar 

  39. Ursu, E., Turkman, K.F.: Periodic autoregressive model identification using genetic algorithms. J. Time Ser. Anal. 33(2), 398–405 (2012)

    MathSciNet  Article  Google Scholar 

  40. Wong, H., Ip, W.C., Zhang, R., Xia, J.: Non-parametric time series models for hydrological forecasting. J. Hydrol. 332(3–4), 337–347 (2007)

    Article  Google Scholar 

  41. Zeileis, A., Kleiber, C., Krämer, W., Hornik, K.: Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44(1–2), 109–123 (2003)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank the Associate Editor and the Referees for their useful comments and suggestions. We are grateful to Eugen Ursu for involving us in research on periodic autoregressive models. This research was supported by University La Sapienza, Rome under grant C26A15NK4H.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Rizzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Asymptotic equivalence of a test of hypothesis and an information criterion

Appendix: Asymptotic equivalence of a test of hypothesis and an information criterion

Let us consider two nested models \(M_0\) and \(M_1\), where \(M_0\) has p parameters and \(M_1\) has q additional parameters that under the null hypothesis \(H_0\) are assumed equal to zero. A standard F test under gaussianity for \(H_0\) is obtained by the test statistic:

$$\begin{aligned} F = \frac{(SS_0-SS_1)/q}{SS_1/(N-p-q)} \end{aligned}$$
(4)

where \(SS_0\) and \(SS_1\) are the residual sum of squares of the model \(M_0\) and \(M_1\) fitted to N observations.

Under the null hypothesis the statistic (4) follows a F distribution with q and \(N-p-q\) degrees of freedom. Let \({\overline{F}} _\alpha \) denote the \((1-\alpha )\)-quantile of that distribution, then hypothesis \(H_0\) is rejected at level \(1-\alpha \) whenever \(F>{\overline{F}}_\alpha \), or

$$\begin{aligned} \log (SS_0) - \log (SS_1) > \log \left( 1+ {\overline{F}}_\alpha \frac{q}{N-p-q} \right) . \end{aligned}$$

For N large the right hand side may be approximated by \({\overline{F}}_\alpha \, q/(N-p-q)\) and rejection is equivalent to

$$\begin{aligned} \log (SS_0) - \log (SS_1) > {\overline{F}}_\alpha \frac{q}{N-p-q} \end{aligned}$$

that may be also written \(\mathrm{IC}_0^* - \mathrm{IC}_1^* >0\) where \(\mathrm{IC}_0^*= \log (SS_0) + \pi ^* \, p\) , \(\mathrm{IC}_1^*= \log (SS_1) + \pi ^* \, (p+q)\) and

$$\begin{aligned} \pi ^*= \frac{N}{N-p-q} \, {\overline{F}}_\alpha . \end{aligned}$$
(5)

It follows that choosing a penalizing constant equal to \(\pi ^*\) in (5), model \(M_1\) will be preferred to model \(M_0\) by the information criterion whenever the test rejects the null hypothesis \(H_0\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Battaglia, F., Cucina, D. & Rizzo, M. Parsimonious periodic autoregressive models for time series with evolving trend and seasonality. Stat Comput 30, 77–91 (2020). https://doi.org/10.1007/s11222-019-09866-0

Download citation

Keywords

  • Genetic algorithms
  • Multiregime models
  • Information criteria
  • Structural change