Parsimonious periodic autoregressive models for time series with evolving trend and seasonality

  • Francesco Battaglia
  • Domenico Cucina
  • Manuel RizzoEmail author


This paper proposes an extension of Periodic AutoRegressive (PAR) modelling for time series with evolving features. The large scale of modern datasets, in fact, implies that the time span may subtend several evolving patterns of the underlying series, affecting also seasonality. The proposed model allows several regimes in time and a possibly different PAR process with a trend term in each regime. The means, autocorrelations and residual variances may change both with the regime and the season, resulting in a very large number of parameters. Therefore as a second step we propose a grouping procedure on the PAR parameters, in order to obtain a more parsimonious and concise model. The model selection procedure is a complex combinatorial problem, and it is solved basing on genetic algorithms that optimize an information criterion. The model is tested in both simulation studies and real data analysis from different fields, proving to be effective for a wide range of series with evolving features, and competitive with respect to more specific models.


Genetic algorithms Multiregime models Information criteria Structural change 



We thank the Associate Editor and the Referees for their useful comments and suggestions. We are grateful to Eugen Ursu for involving us in research on periodic autoregressive models. This research was supported by University La Sapienza, Rome under grant C26A15NK4H.


  1. Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes. Econometrica 66(1), 47–78 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Baragona, R., Battaglia, F., Cucina, D.: Fitting piecewise linear threshold autoregressive models by means of genetic algorithms. Comput. Stat. Data Anal. 47(2), 277–295 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  4. Battaglia, F., Protopapas, M.K.: Multi-regime models for nonlinear nonstationary time series. Comput. Stat. 27(2), 319–341 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Battaglia, F., Cucina, D., Rizzo, M.: A generalization of periodic autoregressive models for seasonal time series. Tech. Rep. 2, Department of Statistical Sciences, University La Sapienza, Rome, Italy, ISSN 2279-798X (2018)Google Scholar
  6. Bodo, G., Cividini, A., Signorini, L.F.: Forecasting the italian industrial production index in real time. J. Forecast. 10(3), 285–299 (1991)CrossRefGoogle Scholar
  7. Box, G.E.P.: Science and statistics. J. Am. Stat. Assoc. 71(356), 791–799 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B 37(2), 149–192 (1975)MathSciNetzbMATHGoogle Scholar
  9. Bruno, G., Lupi, C.: Forecasting industrial production and the early detection of turning points. Empir. Econ. 29(3), 647–671 (2004)CrossRefGoogle Scholar
  10. Bulligan, G., Golinelli, R., Parigi, G.: Forecasting monthly industrial production in real-time: from single equations to factor-based models. Empir. Econ. 39(2), 303–336 (2010)CrossRefGoogle Scholar
  11. Caporale, G., Cunado, J., Gil-Alana, L.A.: Deterministic versus stochastic seasonal fractional integration and structural breaks. Stat. Comput. 22(2), 349–358 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Chatterjee, S., Laudato, M., Lynch, L.A.: Genetic algorithms and their statistical applications: an introduction. Comput. Stat. Data Anal. 22(6), 633–651 (1996)CrossRefzbMATHGoogle Scholar
  13. Cucina, D., Rizzo, M., Ursu, E.: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis (2018). arXiv:1801.01697
  14. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Structural break estimation for nonstationary time series models. J. Am. Stat. Assoc. 101(473), 223–239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A.: Break detection for a class of nonlinear time series models. J. Time Ser. Anal. 29(5), 834–867 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Chichester (1998)zbMATHGoogle Scholar
  17. Franses, P.H.: The effects of seasonally adjusting a periodic autoregressive process. Comput. Stat. Data Anal. 19(6), 683–704 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Franses, P.H., Paap, R.: Periodic Time Series Models. Oxford University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  19. Girardi, A., Guardabascio, B., Ventura, M.: Factor-augmented bridge models (FABM) and soft indicators to forecast italian industrial production. J. Forecast. 35(6), 542–552 (2016)MathSciNetCrossRefGoogle Scholar
  20. Gladyshev, E.: Periodically correlated random sequence. Sov. Math. 2, 385–388 (1961)zbMATHGoogle Scholar
  21. Hipel, K.W., McLeod, A.I.: Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam (1994)Google Scholar
  22. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)CrossRefGoogle Scholar
  23. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefzbMATHGoogle Scholar
  24. Kapetanios, G.: Variable selection in regression models using nonstandard optimisation of information criteria. Comput. Stat. Data Anal. 52(1), 4–15 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Kleiber, C., Hornik, K., Leisch, F., Zeileis, A.: strucchange: an R package for testing for structural change in linear regression models. J. Stat. Softw. 7(2), 1–38 (2002)Google Scholar
  26. Kontoghiorghes, E.J.: Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, Boca Raton (2005)CrossRefzbMATHGoogle Scholar
  27. Li, S., Lund, R.: Multiple changepoint detection via genetic algorithm. J. Clim. 25, 674–686 (2012)CrossRefGoogle Scholar
  28. Lu, Q., Lund, R.B., Lee, T.C.M.: An MDL approach to the climate segmentation problem. Ann. Appl. Stat. 4(1), 299–319 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Noakes, D.J., McLeod, A.I., Hipel, K.W.: Forecasting monthly riverflow time series. Int. J. Forecast. 1(2), 179–190 (1985)CrossRefGoogle Scholar
  30. Ploberger, W., Krämer, W.: The CUSUM test with OLS residuals. Econometrica 60(2), 271–285 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Proietti, T., Hillebrand, E.: Seasonal changes in Central England temperatures. J. R. Stat. Soc. Ser A 180(3), 769–791 (2017)MathSciNetCrossRefGoogle Scholar
  32. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  33. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Wiley, New York (1993)zbMATHGoogle Scholar
  34. Sin, C.Y., White, H.: Information criteria for selecting possibly misspecified parametric models. J. Econom. 71(1–2), 207–225 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. So, M.K.P., Chung, R.S.W.: Dynamic seasonality in time series. Comput. Stat. Data Anal. 70, 212–226 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Teräsvirta, T.: Specification, estimation and evaluation of smooth transition autoregressive models. J. Am. Stat. Assoc. 89(425), 208–218 (1994)zbMATHGoogle Scholar
  37. Thompstone, R.M., Hipel, K.W., McLeod, A.I.: Grouping of periodic autoregressive models. In: Anderson, O.D., Ord, J.K., Robinson, E.A. (eds.) Time Series Analysis: Theory and Practice 6. Proceedings Conference Toronto 1983, North-Holland, Amsterdam, pp. 35–49 (1985)Google Scholar
  38. Tong, H.: Non Linear Time Series: A Dynamical System Approach. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  39. Ursu, E., Turkman, K.F.: Periodic autoregressive model identification using genetic algorithms. J. Time Ser. Anal. 33(2), 398–405 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Wong, H., Ip, W.C., Zhang, R., Xia, J.: Non-parametric time series models for hydrological forecasting. J. Hydrol. 332(3–4), 337–347 (2007)CrossRefGoogle Scholar
  41. Zeileis, A., Kleiber, C., Krämer, W., Hornik, K.: Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44(1–2), 109–123 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Statistical SciencesUniversity La SapienzaRomeItaly
  2. 2.Department of Economics and StatisticsUniversity of SalernoFiscianoItaly

Personalised recommendations