Skip to main content
Log in

Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Estimating copulas with discrete marginal distributions is challenging, especially in high dimensions, because computing the likelihood contribution of each observation requires evaluating \(2^{J}\) terms, with J the number of discrete variables. Our article focuses on the estimation of Archimedean copulas, for example, Clayton and Gumbel copulas. Currently, data augmentation methods are used to carry out inference for discrete copulas and, in practice, the computation becomes infeasible when J is large. Our article proposes two new fast Bayesian approaches for estimating high-dimensional Archimedean copulas with discrete margins, or a combination of discrete and continuous margins. Both methods are based on recent advances in Bayesian methodology that work with an unbiased estimate of the likelihood rather than the likelihood itself, and our key observation is that we can estimate the likelihood of a discrete Archimedean copula unbiasedly with much less computation than evaluating the likelihood exactly or with current simulation methods that are based on augmenting the model with latent variables. The first approach builds on the pseudo-marginal method that allows Markov chain Monte Carlo simulation from the posterior distribution using only an unbiased estimate of the likelihood. The second approach is based on a variational Bayes approximation to the posterior and also uses an unbiased estimate of the likelihood. We show that the two new approaches enable us to carry out Bayesian inference for high values of J for the Archimedean copulas where the computation was previously too expensive. The methodology is illustrated through several real and simulated data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrieu, C., Roberts, G.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139–1160 (2003)

    Google Scholar 

  • Deligiannidis, G., Doucet, A., Pitt, M.: The correlated pseudo-marginal method. J. R. Stat. Soc. B 80, 839–870 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet, A., Pitt, M., Deligiannidis, G., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102(2), 295–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Flury, T., Shephard, N.: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econom. Theory 27(5), 933–956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Garthwaite, P.H., Fan, Y., Sisson, S.A.: Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process. Commun. Stat. Theory Methods 45(17), 5098–5111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofert, M.: Sampling Archimedian copulas. Comput. Stat. Data Anal. 52(12), 5163–5174 (2008)

    Article  MATH  Google Scholar 

  • Hofert, M., Machler, M., Mcneil, A.J.: Likelihood inference for Archimedian copulas in high dimensions under known margins. J. Multivar. Anal. 110, 133–150 (2012)

    Article  MATH  Google Scholar 

  • Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). https://arxiv.org/abs/1312.6114 (2014)

  • Murray, J.S., Dunson, D.B., Carin, L., Lucas, J.: Bayesian Gaussian copula factor models for mixed data. J. Am. Stat. Assoc. 108(502), 656–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ormerod, J.T., Wand, M.P.: Explaining variational approximations. Am. Stat. 64(2), 140–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pakman, A., Paninski, L.: Exact Hamiltonian Monte Carlo for truncated multivariate Gaussian. J. Comput. Graph. Stat. 23(2), 518–542 (2014)

    Article  MathSciNet  Google Scholar 

  • Panagiotelis, A., Czado, C., Joe, H.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107(499), 1063–1072 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Panagiotelis, A., Czado, C., Joe, H., Stober, J.: Model selection for discrete regular vine copulas. Comput. Stat. Data Anal. 106, 138–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt, M., Chan, D., Kohn, R.: Efficient Bayesian inference for Gaussian copula regression models. Biometrika 93(3), 537–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt, M.K., Silva, R.S., Giordani, P., Kohn, R.: On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171(2), 134–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis–Hastings. Ann. Appl. Probab. 7, 110–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Sherlock, C., Thiery, A., Roberts, G., Rosenthal, J.: On the efficiency of pseudo marginal random walk Metropolis algorithm. Ann. Stat. 43(1), 238–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar, A.: Fonctions de Répartition à n Dimensions et Leurs Marges [Distributional Functions ton Dimensions and Their Margins]. vol. 8, pp. 229–231. Publications de l’Institut Statistique de l’Université de Paris (1959)

  • Smith, M., Khaled, M.A.: Estimation of copula models with discrete margins via Bayesian data augmentation. J. Am. Stat. Assoc. 107(497), 290–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Tran, M. N., Kohn, R., Quiroz, M., Villani, M.: Block-wise pseudo marginal Metropolis–Hastings. Preprint arXiv:1603.02485v2 (2016)

  • Tran, M.-N., Nott, D., Kohn, R.: Variational Bayes with intractable likelihood. J. Comput. Graph. Stat. 26(4), 873–882 (2017)

    Article  MathSciNet  Google Scholar 

  • Trivedi, P., Zimmer, D.: Copula modeling: an introduction for practitioners. Found. Trends Econom. 1(1), 1–111 (2005)

    Article  MATH  Google Scholar 

  • Ware, J.E., Snow, K.K., Kolinski, M., Gandeck, B.: SF-36 health survey manual and interpretation guide. The Health Institute New England Medical Centre, Boston (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-N. Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of D. Gunawan and R. Kohn was partially supported by Australian Research Discovery Grant DP150104630 and Australian Center of Excellence Grant CE140100049. The research of J. Dick and K. Suzuki was partially supported by Australian Research Discovery Grant DP150101770.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 97 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawan, D., Tran, MN., Suzuki, K. et al. Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins. Stat Comput 29, 933–946 (2019). https://doi.org/10.1007/s11222-018-9846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9846-y

Keywords

Navigation