Skip to main content
Log in

The dynamic stochastic topic block model for dynamic networks with textual edges

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The present paper develops a probabilistic model to cluster the nodes of a dynamic graph, accounting for the content of textual edges as well as their frequency. Vertices are clustered in groups which are homogeneous both in terms of interaction frequency and discussed topics. The dynamic graph is considered stationary on a latent time interval if the proportions of topics discussed between each pair of node groups do not change in time during that interval. A classification variational expectation–maximization algorithm is adopted to perform inference. A model selection criterion is also derived to select the number of node groups, time clusters and topics. Experiments on simulated data are carried out to assess the proposed methodology. We finally illustrate an application to the Enron dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The values of \(\varLambda \) were slightly changed: \(\lambda _{qrl} = 0.0025\) when \(r \ne q\), \(\lambda _{qrl} = 0.01\) otherwise. Notice that the ratio between the two different values remains equal to 4.

References

  • Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  • Aitkin, M.: Posterior Bayes factors (disc: p128–142). J. R. Stat. Soc. Ser. B Methodol. 53, 111–128 (1991)

    MATH  Google Scholar 

  • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719–725 (2000)

    Article  Google Scholar 

  • Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 113–120. ACM (2006)

  • Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). http://dl.acm.org/citation.cfm?id=944919.944937

  • Blondel, V.D., Loup Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  • Bouveyron, C., Latouche, P., Zreik, R.: The stochastic topic block model for the clustering of vertices in networks with textual edges. Stat. Comput. (2016). https://doi.org/10.1007/s11222-016-9713-7. https://hal.archives-ouvertes.fr/hal-01299161

  • Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Research Report RR-1364, INRIA, (1991). https://hal.inria.fr/inria-00075196, projet CLOREC

  • Côme, E., Latouche, P.: Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Stat. Model. 15(6), 564–589 (2015). https://doi.org/10.1177/1471082X15577017

    Article  MathSciNet  Google Scholar 

  • Corneli, M., Latouche, P., Rossi, F.: Modelling time evolving interactions in networks through a non stationary extension of stochastic block models. In: Pei, J., Silvestri, F., Tang, J. (eds) International Conference on Advances in Social Networks Analysis and Mining ASONAM 2015, IEEE/ACM, pp. 1590–1591. ACM, Paris, France (2015). https://doi.org/10.1145/2808797.2809348. https://hal.archives-ouvertes.fr/hal-01263540

  • Corneli, M., Latouche, P., Rossi, F.: Block modelling in dynamic networks with non-homogeneous poisson processes and exact ICL. Soc. Netw. Anal. Min. 6(1), 1–14 (2016a). https://doi.org/10.1007/s13278-016-0368-3

    Article  Google Scholar 

  • Corneli, M., Latouche, P., Rossi, F.: Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing 192, 81–91 (2016b). https://doi.org/10.1016/j.neucom.2016.02.031

    Article  Google Scholar 

  • Corneli, M., Latouche, P., Rossi, F.: Multiple change points detection and clustering in dynamic networks. Stat. Comput. 28(5), 989–1007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Daudin, J.J., Picard, F., Robin, S.: A mixture model for random graphs. Stat. Comput. 18(2), 173–183 (2008)

    Article  MathSciNet  Google Scholar 

  • Durante, D., Dunson, D.B.: Locally adaptive dynamic networks. Ann. Appl. Stat. 10(4), 2203–2232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Friel, N., Rastelli, R., Wyse, J., Raftery, A.E.: Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proc. Natl. Acad. Sci. 113(24), 6629–6634 (2016). https://doi.org/10.1073/pnas.1606295113. http://www.pnas.org/content/113/24/6629.full.pdf

  • Guigourès, R., Boullé, M., Rossi, F.: A triclustering approach for time evolving graphs. In: IEEE 12th International Conference on Data Mining Workshops (ICDMW 2012) on Co-clustering and Applications, Brussels, Belgium, pp. 115–122 (2012). https://doi.org/10.1109/ICDMW.2012.61

  • Guigourès, R., Boullé, M., Rossi, F.: Discovering patterns in time-varying graphs: a triclustering approach. In: Advances in Data Analysis and Classification, pp. 1–28 (2015). https://doi.org/10.1007/s11634-015-0218-6

  • Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social networks. J. R. Stat. Soc. Ser. A (Stat. Soc.) 170(2), 301–354 (2007)

    Article  MathSciNet  Google Scholar 

  • Hanneke, S., Fu, W., Xing, E.P.: Discrete temporal models of social networks. Electron. J. Stat. 4, 585–605 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Jernite, Y., Latouche, P., Bouveyron, C., Rivera, P., Jegou, L., Lamassé, S.: The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul. Ann. Appl. Stat. 8(1), 55–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Krivitsky, P.N., Handcock, M.S.: A separable model for dynamic networks. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 76(1), 29–46 (2014)

    Article  MathSciNet  Google Scholar 

  • Latouche, P., Birmelé, E., Ambroise, C.: Variational bayesian inference and complexity control for stochastic block models. Stat. Model. 12(1), 93–115 (2012)

    Article  MathSciNet  Google Scholar 

  • Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: joint models of topic and author community. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 665–672. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553460

  • Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B 79(4), 1119–1141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks. ArXiv e-prints 1512, 07075 (2015)

    Google Scholar 

  • McCallum, A., Corrada-Emmanuel, A., Wang, X.: The author-recipient-topic model for topic and role discovery in social networks. In: Workshop on Link Analysis, Counterterrorism and Security (2005)

  • Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(026), 113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Google Scholar 

  • Nouedoui, L., Latouche, P.: Bayesian non parametric inference of discrete valued networks. In: 21-st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), pp. 291–296. Bruges, Belgium (2013)

  • Nowicki, K., Snijders, T.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96(455), 1077–1087 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Pathak, N., DeLong, C., Banerjee, A., Erickson, K.: Social topic models for community extraction. In: The 2nd SNAKDD workshop, vol. 8, p. 2008 (2008)

  • Peel, L., Clauset, A.: Detecting change points in the large-scale structure of evolving networks. (2014). CoRR abs/1403.0989, arxiv:1403.0989

  • Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  • Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)

    Article  Google Scholar 

  • Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp. 487–494. AUAI Press, Arlington, VA, USA (2004). http://dl.acm.org/citation.cfm?id=1036843.1036902

  • Sachan, M., Contractor, D., Faruquie, T.A., Subramaniam, L.V.: Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 331–340. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2187836.2187882

  • Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space models. ACM SIGKDD Explor. Newsl. 7(2), 31–40 (2005)

    Article  Google Scholar 

  • Sewell, D.K., Chen, Y.: Latent space models for dynamic networks. J. Am. Stat. Assoc. 110(512), 1646–1657 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sewell, D.K., Chen, Y.: Latent space models for dynamic networks with weighted edges. Soc. Netw. 44, 105–116 (2016)

    Article  Google Scholar 

  • Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic author-topic models for information discovery. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 306–315. ACM, New York, NY, USA (2004). https://doi.org/10.1145/1014052.1014087

  • von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Wong, G.: Stochastic blockmodels for directed graphs. J. Am. Stat. Assoc. 82, 8–19 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Statist. 11(1), 95–103 (1983). https://doi.org/10.1214/aos/1176346060

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, K.S., Hero III, A.O.: Dynamic stochastic blockmodels: statistical models for time-evolving networks. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol. 7812. Springer, Berlin (2013)

    Google Scholar 

  • Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in dynamic social networks a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, D., Manavoglu, E., Li, J., Giles, C.L., Zha, H.: Probabilistic models for discovering e-communities. In: Proceedings of the 15th International Conference on World Wide Web, WWW ’06, pp. 173–182. ACM, New York, NY, USA (2006). https://doi.org/10.1145/1135777.1135807

  • Zreik, R., Latouche, P., Bouveyron, C.: The dynamic random subgraph model for the clustering of evolving networks. Comput. Stat. 32(2), 501–533 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Corneli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

1.1 Proof of Proposition 1

Proof

The VEM update step for the distribution \(R(Z^{iju}_n)\), for all iju and n, is given by

$$\begin{aligned}&\log R(Z^{iju}_n)\nonumber \\&\quad =\mathbf {E}_{R(Z^{\smallsetminus i,j,u,n}, \theta )}[\log p(W|Z,D,\beta ) \nonumber \\&\quad \quad + \log p(Z|D,Y,X,\theta )] + C \nonumber \\&\quad =\sum _{k=1}^K Z^{iju}_{nk}\sum _{v=1}^V W^{iju}_{nv} \log \beta _{kv}\nonumber \\&\quad \quad + \sum _{q,r}^Q\sum _{l=1}^{L} Y_{iq}Y_{jr} X_{ul}\sum _{k=1}^KZ^{iju}_{nk}\mathbf {E}_{\theta _{qrl}}[\log \theta _{qrl}] + C\nonumber \\&\quad =\sum _{k=1}^K Z^{iju}_{nk}\left( \sum _{v=1}^V W^{iju}_{nv} \log \beta _{kv} \right. \nonumber \\&\quad \quad \left. + \sum _{q,r}^Q \sum _{l=1}^L Y_{iq}Y_{jr} X_{ul} \left( \psi (\gamma _{qrlk}) - \psi \left( \sum _{k=1}^K \gamma _{qrlk}\right) \right) \right) + C, \end{aligned}$$
(18)

where the expectation is taken with respect to the distribution \(R(Z, \theta )\) conditional on \(Z^{iju}_n\) to be fixed, C includes all the terms not depending on \(Z^{iju}_n\) and \(\psi (\cdot )\) denotes the digamma function. The functional form of a multinomial distribution can be recognised

$$\begin{aligned} R(Z^{iju}_n) = \mathcal {M}\left( Z^{iju}_n; 1, \phi ^{iju}_n = \{\phi ^{iju}_{n1}, \dots , \phi ^{iju}_{nK}\} \right) , \end{aligned}$$

where

$$\begin{aligned}&\phi ^{iju}_{nk} \propto \left( \prod _{v=1}^V \beta _{kv}^{W^{iju}_{nv}}\right) \prod _{q,r}^Q \prod _{l=1}^L \exp \left( \psi (\gamma _{qrlk}) \right. \\&\quad \left. - \psi \left( \sum _{k=1}^K \gamma _{qrlk}\right) \right) ^{Y_{iq} Y_{jr} X_{ul}}. \end{aligned}$$

\(\square \)

1.2 Proof of Proposition 2

Proof

The VEM update step for distribution the distribution \(R(\theta )\) is given by

$$\begin{aligned} \log R(\theta )&= \mathbf {E}_{R(Z)}[\log p(Z|D, Y, X, \theta )] + C \nonumber \\&= \sum _{j\ne i}^{M} \sum _{u=1}^U\sum _{n=1}^{N_{iju}} \sum _{q,r}^Q \sum _{l=1}^L Y_{iq} Y_{jr} X_{ul}\nonumber \\&\quad \sum _{k=1}^K\mathbf {E}_{R(Z)}[Z^{iju}_{nk}] \log \theta _{qrlk} \nonumber \\&\quad + \sum _{q,r}^Q \sum _{l=1}^L \sum _{k=1}^K(\alpha _k - 1)\log \theta _{qrlk} + C \nonumber \\&=\sum _{q,r}^Q \sum _{l=1}^L \sum _{k=1}^K\left( \alpha _k \right. \nonumber \\&\quad \left. + \sum _{j\ne i}^M\sum _{u=1}^U \sum _{n=1}^{N_{iju}} Y_{iq} Y_{jr} X_{ul}\phi ^{iju}_{nk} - 1 \right) \log \theta _{qrlk} \nonumber \\&\quad + C, \end{aligned}$$
(19)

where C contains the terms not depending on \(\theta \). The functional form of a Dirichlet distribution can be recognized

$$\begin{aligned} R(\theta ) = \prod _{q,r}^Q \prod _{l=1}^L \text {Dir}(\theta _{qrl}; \gamma _{qrl} = \{\gamma _{qrl1}, \dots , \gamma _{qrlK}\}), \end{aligned}$$

with

$$\begin{aligned} \gamma _{qrlk} = \alpha _k + \sum _{j\ne i}^M \sum _{u=1}^U\sum _{n=1}^{N_{iju}} Y_{iq} Y_{jr} X_{ul}\phi ^{iju}_{nk}. \end{aligned}$$

\(\square \)

1.3 Derivation of the lower bound

The functional \(\tilde{\mathcal {L}}(R(\cdot ); D,Y, X,W, \beta )\) in (12) given in Propositions 2 and 3, is given by

$$\begin{aligned}&\tilde{\mathcal {L}}(R(\cdot );D,Y,X,W,\beta )\\&\quad =\sum _{j\ne i}^M \sum _{u=1}^U \sum _{n=1}^{N_{iju}}\sum _{k=1}^K\sum _{v=1}^V W^{iju}_{nv}\phi ^{iju}_{nk}\log (\beta _{kv})\\&\qquad +\sum _{j\ne i}^M \sum _{u=1}^U \sum _{n=1}^{N_{iju}}\sum _{k=1}^K\phi ^{iju}_{nk}\\&\qquad \times \left( \sum _{q,r}^Q \sum _{l}^LY_{iq}Y_{jr}X_{ul}\left( \psi (\gamma _{qrlk}) - \psi (\sum _{k=1}^K \gamma _{qrlk})\right) \right) \\&\qquad +\sum _{q,r}^Q \sum _l^L\left( \log \varGamma \left( \sum _{k=1}^K \alpha _k\right) - \sum _{k=1}^K\log \varGamma (\alpha _k) \right. \\&\qquad \left. + \sum _{k=1}^K(\alpha _k - 1)\left( \psi (\gamma _{qrlk}) - \psi \left( \sum _{k=1}^K \gamma _{qrlk}\right) \right) \right) \\&\qquad -\sum _{j\ne i}^M\sum _{u=1}^U\sum _{n=1}^{N_{iju}}\sum _{k=1}^K\phi ^{iju}_{nk}\log (\phi ^{iju}_{nk}) \\&\qquad -\sum _{q,r}^{Q} \sum _{l}^L \left( \log \varGamma \left( \sum _{k=1}^K \gamma _{qrlk}\right) - \sum _{k=1}^K\log \varGamma (\gamma _{qrlk}) \right. \\&\qquad \left. + \sum _{k=1}^K(\gamma _{qrlk} - 1)\left( \psi (\gamma _{qrlk}) - \psi \left( \sum _{k=1}^K \gamma _{qrlk}\right) \right) \right) . \end{aligned}$$

1.4 Proof of Proposition 3

Proof

The maximization of the functional in (12) with respect to \(\beta \) is considered at first. By isolating the terms depending on \(\beta \) and introducing K Lagrange multipliers accounting for the constraints \(\sum _{v=1}^V \beta _{kv}=1\), \(\forall k\), we obtain the following objective function

$$\begin{aligned} f(\beta ):= & {} \sum _{j \ne i}^M\sum _{u=1}^U\sum _{n=1}^{N_{iju}}\sum _{k=1}^K\sum _{v=1}^V \phi ^{iju}_{nk}\log \beta _{kv} \\&+ \sum _{k=1}^K \lambda _k\left( \sum _{k=1}^K\beta _{kv}-1\right) , \end{aligned}$$

whose gradient can be easily computed and set equal to zero to find the \(\beta _{kv}\) in (13).

In a similar fashion, when optimizing with respect to \(\rho \), the following objective function is introduced

$$\begin{aligned} f(\rho ):= \sum _{i=1}^M \sum _{q=1}^Q Y_{iq} \log \rho _{q} + \lambda \left( \sum _{q=1}^Q\rho _q-1\right) , \end{aligned}$$
(20)

and its first derivative with respect to \(\rho _q\) is set equal to zero to obtain the stationary point in equation (15). The optimization with respect to \(\delta \) is analogous and (14) is a consequence of the likelihood in (4). \(\square \)

1.5 Proof of Proposition 4

Proof

A factorizing prior distribution being attached to the model parameters, \((\varLambda , \rho , \delta , \beta )\), the integrated complete-data log-likelihood \( \log p(W,D,Y,X|Q,L,K)\) can easily be written as

$$\begin{aligned} \begin{aligned}&\log p(W,D,Y,X|Q,L,K)\\&\quad = \log \int _{\beta } p(W|D,Y,X,\beta ,Q,L,K)p(\beta |K)d\beta \\&\qquad + \log \int _{\varLambda } p(D|Y, X, \varLambda ,Q,L)p(\varLambda |Q,L)d\varLambda \\&\qquad + \log \int _{\rho } p(Y|\rho ,Q)p(\rho |Q)d\rho \\&\qquad + \log \int _{\delta } p(X| \delta ,L)p(\delta |L)d\delta , \end{aligned} \end{aligned}$$
(21)

where the dependency on (QLK) is made explicit and the pair \((Z, \theta )\) is integrated out as in Sect. 3.1. Following the derivation of the ICL criterion (Biernacki et al. 2000) we rely on a BIC-like approximation of the second term on the right hand side of the above equation to obtain

$$\begin{aligned} \begin{aligned}&\log \int _{\varLambda } p(D|Y, X, \varLambda ,Q,L)p(\varLambda |Q,L)d\varLambda \\&\quad \approx \max _{\varLambda } \log p(D|Y,X,\varLambda , Q,L) \\&\qquad -\, \frac{Q^2L}{2}\log (MU(M-1)). \end{aligned} \end{aligned}$$

Similarly the last two terms can be approximated as

$$\begin{aligned}&\log \int _{\rho } p(Y|\rho ,Q)p(\rho |Q)d\rho \\&\quad \approx \max _{\rho } \log p(Y|\rho , Q) - \frac{Q-1}{2}\log (M) \end{aligned}$$

and

$$\begin{aligned}&\log \int _{\delta } p(X|\delta ,L)p(\delta |L)d\delta \\&\quad \approx \max _{\delta } \log p(X|\delta , L) - \frac{L-1}{2}\log (U). \end{aligned}$$

Notice that the last three approximations lead to the ICL criterion for the dSBM model

$$\begin{aligned} \begin{aligned} ICL_{dSBM}&:=\max _{\varLambda } \log p(D|Y,X,\varLambda , Q,L)\\&\quad - \frac{Q^2L}{2}\log (MU(M-1)) \\&\quad + \max _{\rho } \log p(Y|\rho , Q) - \frac{Q-1}{2}\log (M) \\&\quad + \max _{\delta } \log p(X|\delta , L) - \frac{L-1}{2}\log (U). \end{aligned} \end{aligned}$$

The exact version of this criterion is maximized relying on a greedy search approach in Corneli et al. (2016b).

Consider now the first term on the right hand side of (21). Recalling that the documents W can be organized as \(W=(\tilde{W}_{qrl})_{q,r,l}\) such that all words in \(\tilde{W}_{qrl}\) follow the same mixture distribution over topics, we adopt the BIC-like approximation obtained in Bouveyron et al. (2016) corrected by the number of documents in dSTBM

$$\begin{aligned} \begin{aligned}&\log \int _{\beta } p(W|D,Y,X,\beta ,Q,L,K)p(\beta |K)d\beta \\&\quad \approx \max _{\beta }\log p(W|D,Y,X,\beta ,Q,L,K)\\&\quad - \frac{K(V-1)}{2} \log (Q^2L). \end{aligned} \end{aligned}$$

Since the first term on the right hand side of the above approximation is not tractable, it is replaced by its variational approximation \(\mathcal {\tilde{L}}(R(\cdot );D,Y,X,W,\beta )\), defined in (12), and the proposition is proven. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corneli, M., Bouveyron, C., Latouche, P. et al. The dynamic stochastic topic block model for dynamic networks with textual edges. Stat Comput 29, 677–695 (2019). https://doi.org/10.1007/s11222-018-9832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9832-4

Keywords

Navigation