Skip to main content
Log in

Importance sampling for partially observed temporal epidemic models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We present an importance sampling algorithm that can produce realisations of Markovian epidemic models that exactly match observations, taken to be the number of a single event type over a period of time. The importance sampling can be used to construct an efficient particle filter that targets the states of a system and hence estimate the likelihood to perform Bayesian inference. When used in a particle marginal Metropolis Hastings scheme, the importance sampling provides a large speed-up in terms of the effective sample size per unit of computational time, compared to simple bootstrap sampling. The algorithm is general, with minimal restrictions, and we show how it can be applied to any continuous-time Markov chain where we wish to exactly match the number of a single event type over a period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Also known as the Gillespie algorithm or the Doob-Gillespie algorithm.

  2. In fact this can be done analytically for this model.

  3. This condition may not be true after the final observed infection event, depending on what other observations are made on the system afterwards.

References

  • Aho, A.V., Ullman, J.D.: Foundations of Computer Science. W. H. Freeman and Company, New York (1995)

    MATH  Google Scholar 

  • Anderson, D.F.: A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127, 214107 (2007)

    Article  Google Scholar 

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. B 72, 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  • Black, A.J., Geard, N., McCaw, J.M., McVernon, J., Ross, J.V.: Characterising pandemic severity and transmissibility from data collected during first few hundred studies. Epidemics 19, 61–73 (2017)

    Article  Google Scholar 

  • Black, A.J., McKane, A.J.: Stochastic formulation of ecological models and their applications. Trends Ecol. Evol. 27, 337–345 (2012)

    Article  Google Scholar 

  • Black, A.J., Ross, J.V.: Estimating a Markovian epidemic model using household serial interval data from the early phase of an epidemic. PLoS ONE 8, e73420 (2013)

    Article  Google Scholar 

  • Black, A.J., Ross, J.V.: Computation of epidemic final size distributions. J. Theor. Biol. 367, 159–165 (2015)

    Article  Google Scholar 

  • David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, New York (2005)

    Google Scholar 

  • Del Moral, P., Jasra, P., Lee, A., Yau, C., Zhang, X.: The alive particle filter and its use in particle Markov chain Monte Carlo. Stoch. Anal. Appl. 33, 943–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet, A., de Freitas, N., Gordon, N.J. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

  • Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. Handb. Nonlinear Filter. 12(656–704), 3 (2009)

    MATH  Google Scholar 

  • Doucet, A., Pitt, M.K., Deligiannidis, G., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102, 295–313 (2015). https://doi.org/10.1093/biomet/asu075

    Article  MathSciNet  MATH  Google Scholar 

  • Drovandi, C.C.: Pseudo-marginal algorithms with multiple CPUs (2014). http://eprints.qut.edu.au/61505

  • Drovandi, C.C., McCutchan, R.A.: Alive SMC\(^2\): Bayesian model selection for low-count time series models with intractable likelihoods. Biometrics 72, 344–353 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • EpiStruct.: (2017). https://github.com/EpiStruct/Black-2018

  • Gibson, G.J., Renshaw, E.: Estimating parameters in stochastic compartmental models using Markov chain methods. Math. Med. Biol. 15, 19–40 (1998). https://doi.org/10.1093/imammb/15.1.19

    Article  MATH  Google Scholar 

  • Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

    Article  Google Scholar 

  • Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  • Golightly, A., Kypraios, T.: Efficient SMC\(^2\) schemes for stochastic kinetic models. Stat. Comput. (2017). https://doi.org/10.1007/s11222-017-9789-8

  • Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1, 807–820 (2011). https://doi.org/10.1098/rsfs.2011.0047

    Article  Google Scholar 

  • Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140, 107–113 (1993)

    Google Scholar 

  • Jenkinson, G., Goutsias, J.: Numerical integration of the master equation in some models of stochastic epidemiology. PLoS ONE 7, e36160 (2012)

    Article  Google Scholar 

  • Jewell, C.P., Kypraios, T., Neal, P., Roberts, G.O.: Bayesian analysis for emerging infectious diseases. Bayesian Anal. 4, 465–496 (2009). https://doi.org/10.1214/09-BA417

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, NJ (2007)

    MATH  Google Scholar 

  • Knuth, D.: The Art of Computer Programming, vol. 1. Addison-Wesley, Reading, MA (1997)

    MATH  Google Scholar 

  • Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  • Lau, M.S.Y., Cowling, B.J., Cook, A.R., Riley, S.: Inferring influenza dynamics and control in households. Proc. Natl. Acad. Sci. 112, 9094–9099 (2015)

    Article  Google Scholar 

  • McKinley, T.J., Ross, J.V., Deardon, R., Cook, A.R.: Simulation-based Bayesian inference for epidemic models. Comput. Stat. Data Anal. 71, 434–447 (2014). https://doi.org/10.1016/j.csda.2012.12.012

    Article  MathSciNet  MATH  Google Scholar 

  • O’Neill, P.D., Roberts, G.O.: Bayesian inference for partially observed stochastic epidemics. J. R. Stat. Soc. A 162, 121–130 (1999). https://doi.org/10.1016/j.epidem.2013.12.002

    Article  Google Scholar 

  • Pitt, M.K., Silva, R., Giordani, P., Kohn, R.: On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171, 134–151 (2012). https://doi.org/10.1016/j.jeconom.2012.06.004

    Article  MathSciNet  MATH  Google Scholar 

  • Pooley, C.M., Bishop, S.C., Marion, G.: Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes. J. R. Soc. Interface 12, 20150225 (2015)

    Article  Google Scholar 

  • Regan, D.G., Wood, J.G., Benevent, C., et al.: Estimating the critical immunity threshold for preventing hepatitis a outbreaks in men who have sex with men. Epidemiol. Infect. 144, 1528–1537 (2016). https://doi.org/10.1017/S0950268815002605

    Article  Google Scholar 

  • Roh, M.K., Gillespie, D.T., Petzold, L.R.: State-dependent biasing method for importance sampling in the weighted stochastic simulation algorithm. J. Chem. Phys. 133, 174106 (2010)

    Article  Google Scholar 

  • Sherlock, C., Thiery, A.H., Roberts, G.O., Rosenthal, J.S.: On the efficiency of pseudo-marginal random walk metropolis algorithms. Ann. Stat. 43, 238–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Stockdale, J.E., Kypraios, T., O’Neill, P.D.: Modelling and bayesian analysis of the Abakaliki smallpox data. Epidemics 19, 13–23 (2017). https://doi.org/10.1016/j.epidem.2016.11.005

    Article  Google Scholar 

  • van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  • Walker, J.N., Ross, J.V., Black, A.J.: Inference of epidemiological parameters from household stratified data. PLoS ONE 12, e0185910 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an ARC DECRA fellowship (DE160100690). AJB also acknowledges support from both the ARC Centre of Excellence for Mathematical and Statistical Frontiers (CoE ACEMS), and the Australian Government NHMRC Centre for Research Excellence in Policy Relevant Infectious diseases Simulation and Mathematical Modelling (CRE PRISM\(^2\)). Supercomputing resources were provided by the Phoenix HPC service at the University of Adelaide. AJB would also like to thank Joshua Ross and James Walker for comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Black.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, A.J. Importance sampling for partially observed temporal epidemic models. Stat Comput 29, 617–630 (2019). https://doi.org/10.1007/s11222-018-9827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9827-1

Keywords

Navigation