Advertisement

Rank aggregation using latent-scale distance-based models

  • Philip L. H. Yu
  • Hang Xu
Article
  • 69 Downloads

Abstract

Rank aggregation aims at combining rankings of a set of items assigned by a sample of rankers to generate a consensus ranking. A typical solution is to adopt a distance-based approach to minimize the sum of the distances to the observed rankings. However, this simple sum may not be appropriate when the quality of rankers varies. This happens when rankers with different backgrounds may have different cognitive levels of examining the items. In this paper, we develop a new distance-based model by allowing different weights for different rankers. Under this model, the weight associated with a ranker is used to measure his/her cognitive level of ranking of the items, and these weights are unobserved and exponentially distributed. Maximum likelihood method is used for model estimation. Extensions to the cases of incomplete rankings and mixture modeling are also discussed. Empirical applications demonstrate that the proposed model produces better rank aggregation than those generated by Borda and the unweighted distance-based models.

Keywords

Ranking data Latent-scale distance-based model Rank aggregration Incomplete ranking 

References

  1. Aledo, J.A., Gámez, J.A., Molina, D.: Tackling the rank aggregation problem with evolutionary algorithms. Appl. Math. Comput. 222, 632–644 (2013)MathSciNetzbMATHGoogle Scholar
  2. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math. Soc. Sci. 64(1), 28–40 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 276–284 (2001)Google Scholar
  4. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  5. Busse, L.M., Orbanz, P., Buhmann, J.M.: Cluster analysis of heterogeneous rank data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 113–120 (2007)Google Scholar
  6. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: Extending distance-based ranking models in estimation of distribution algorithms. In: Evolutionary Computation (CEC), 2014 IEEE Congress on, pp. 2459–2466. IEEE (2014)Google Scholar
  7. de Borda, J.: Mémoire sur les élections au scrutin. Mémoires de l’Académie Royale des Sciences Année, pp. 657–664 (1781)Google Scholar
  8. DeConde, R.P., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., Etzioni, R.: Combining results of microarray experiments: a rank aggregation approach. Stat. Appl. Genet. Mol. Biol. 5(1):Article 15 (2006)Google Scholar
  9. Deng, K., Han, S., Li, K.J., Liu, J.S.: Bayesian aggregation of order-based rank data. J. Am. Stat. Assoc. 109(507), 1023–1039 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622 (2001)Google Scholar
  11. Fligner, M.A., Verducci, J.S.: Distance-based ranking models. J. R. Stat. Soc. B 48(3), 359–369 (1986)MathSciNetzbMATHGoogle Scholar
  12. Fligner, M.A., Verducci, J.S.: Posterior probabilities for a consensus ordering. Psychometrika 55(1), 53–63 (1990)MathSciNetCrossRefGoogle Scholar
  13. Irurozki, E., Calvo, B., Lozano, J.A.: Sampling and learning the Mallows model under the Ulam distance. Technical report, Department of Computer Science and Artificial Intelligence, University of the Basque Country (2014)Google Scholar
  14. Irurozki, E., Calvo, B., Lozano, J.A.: Sampling and learning the Mallows and generalized Mallows models under the Cayley distance. Methodol. Comput. Appl. Probab. 20(1), 1–35 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Lee, M.D., Steyvers, M., Miller, B.: A cognitive model for aggregating people’s rankings. PLoS One 9(5), e96431 (2014)CrossRefGoogle Scholar
  17. Lin, S., Ding, J.: Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies. Biometrics 65(1), 9–18 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mallows, C.L.: Non-null ranking models. I. Biometrika 44(1–2), 114–130 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Murphy, T.B., Martin, D.: Mixtures of distance-based models for ranking data. Comput. Stat. Data Anal. 41(3), 645–655 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Naume, B., Zhao, X., Synnestvedt, M., Borgen, E., Russnes, H.G., Lingjærde, O.C., Strømberg, M., Wiedswang, G., Kvalheim, G., Kåresen, R., et al.: Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol. Oncol. 1(2), 160–171 (2007)CrossRefGoogle Scholar
  21. Niederreiter, H.: Quasi-Monte Carlo Methods. Wiley Online Library (2010)Google Scholar
  22. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistics and Actuarial ScienceThe University of Hong KongHong KongChina

Personalised recommendations