Skip to main content
Log in

Generalized additive models with flexible response functions

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Common generalized linear models depend on several assumptions: (i) the specified linear predictor, (ii) the chosen response distribution that determines the likelihood and (iii) the response function that maps the linear predictor to the conditional expectation of the response. Generalized additive models (GAM) provide a convenient way to overcome the restriction to purely linear predictors. Therefore, the covariates may be included as flexible nonlinear or spatial functions to avoid potential bias arising from misspecification. Single index models, on the other hand, utilize flexible specifications of the response function and therefore avoid the deteriorating impact of a misspecified response function. However, such single index models are usually restricted to a linear predictor and aim to compensate for potential nonlinear structures only via the estimated response function. We will show that this is insufficient in many cases and present a solution by combining a flexible approach for response function estimation using monotonic P-splines with additive predictors as in GAMs. Our approach is based on maximum likelihood estimation and also allows us to provide confidence intervals of the estimated effects. To compare our approach with existing ones, we conduct extensive simulation studies and apply our approach on two empirical examples, namely the mortality rate in São Paulo due to respiratory diseases based on the Poisson distribution and credit scoring of a German bank with binary responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bollaerts, K., Eilers, P.H., Mechelen, I.: Simple and multiple P-splines regression with shape constraints. Br. J. Math. Stat. Psychol. 59(2), 451–469 (2006)

    Article  MathSciNet  Google Scholar 

  • Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22(4), 477–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cameron, A.C., Trivedi, P.K.: Microeconometrics: Methods and Applications. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  • Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P.: Generalized partially linear single-index models. J. Am. Stat. Assoc. 92(438), 477–489 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Czado, C., Santner, T.J.: The effect of link misspecification on binary regression inference. J. Stat. Plan. Inference 33(2), 213–231 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L., Hamerle, A., Tutz, G.: Multivariate Statistische Verfahren. Walter de Gruyter GmbH & Co KG, Berlin (1996)

    MATH  Google Scholar 

  • Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression: Models, Methods and Applications. Springer Science & Business Media, New Yor (2013)

    Book  MATH  Google Scholar 

  • Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76(376), 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  • Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach. Learn. 77(1), 103–123 (2009)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R.: Generalized additive models. Stat. Sci. 1(3), 297–310 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Held, L., Sabanés Bové, D.: Applied Statistical Inference. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  • Ichimura, H.: Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econom. 58(1), 71–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Jørgensen, B.: The delta algorithm and GLIM. Int. Stat. Rev./Rev. Int. Stat. 52(3), 283–300 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, R.W., Spady, R.H.: An efficient semiparametric estimator for binary response models. Econometrica 61(2), 387–421 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., Yoon, J.: Parametric links for binary choice models: a Fisherian–Bayesian colloquy. J. Econom. 152(2), 120–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Leitenstorfer, F., Tutz, G.: Generalized monotonic regression based on B-splines with an application to air pollution data. Biostatistics 8(3), 654–673 (2007)

    Article  MATH  Google Scholar 

  • Leitenstorfer, F., Tutz, G.: Estimation of single-index models based on boosting techniques. Stat. Model. 11(3), 203–217 (2011)

    Article  MathSciNet  Google Scholar 

  • Li, Q., Racine, J.S.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  • Lobo, J.M., Jiménez-Valverde, A., Real, R.: AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008)

    Article  Google Scholar 

  • Marra, G., Wood, S.N.: Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55(7), 2372–2387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Marra, G., Wood, S.N.: Coverage properties of confidence intervals for generalized additive model components. Scand. J. Stat. 39(1), 53–74 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Marschner, I.C., et al.: glm2: fitting generalized linear models with convergence problems. R J. 3(2), 12–15 (2011)

    Google Scholar 

  • Marx, B.D.: Varying-coefficient single-index signal regression. Chemom. Intell. Lab. Syst. 143, 111–121 (2015)

    Article  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, London (1989)

    Book  MATH  Google Scholar 

  • Muggeo, V.M., Ferrara, G.: Fitting generalized linear models with unspecified link function: a P-spline approach. Comput. Stat. Data Anal. 52(5), 2529–2537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Pya, N.: scam: Shape Constrained Additive Models. R package version 1.2-2 (2017)

  • Pya, N., Wood, S.N.: Shape constrained additive models. Stat. Comput. 25(3), 543–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017)

  • Tutz, G., Petry, S.: Nonparametric estimation of the link function including variable selection. Stat. Comput. 22(2), 545–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Tutz, G., Petry, S.: Generalized additive models with unknown link function including variable selection. J. Appl. Stat. 43(15), 2866–2885 (2016)

    Article  MathSciNet  Google Scholar 

  • Wang, J.L., Xue, L., Zhu, L., Chong, Y.S., et al.: Estimation for a partial-linear single-index model. Ann. Stat. 38(1), 246–274 (2010)

    MathSciNet  MATH  Google Scholar 

  • Weisberg, S., Welsh, A.: Adapting for the missing link. Ann. Stat. 22(4), 1674–1700 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Wood, S.: Monotonic smoothing splines fitted by cross validation. SIAM J. Sci. Comput. 15(5), 1126–1133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Wood, S.N.: Generalized Additive Models: An Introduction with R, 2nd edn. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  • Wood, S.N., Fasiolo, M.: A generalized Fellner–Schall method for smoothing parameter optimization with application to tweedie location, scale and shape models. Biometrics (2017). https://doi.org/10.1111/biom.12666

  • Yu, Y., Ruppert, D.: Penalized spline estimation for partially linear single-index models. J. Am. Stat. Assoc. 97(460), 1042–1054 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Y., Wu, C., Zhang, Y.: Penalised spline estimation for generalised partially linear single-index models. Stat. Comput. 27(2), 571–582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Sebastian Petry for providing the code to the paper of Tutz and Petry (2016), such that we could compare our method with the boosting approach. We also want to thank two anonymous referees and an associate editor for their helpful comments improving this paper. Moreover, we acknowledge financial support by the German Research Foundation (DFG), Grant KN 922/4-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Spiegel.

Electronic supplementary material

Appendix

Appendix

Algorithm 1

(FlexGAM1)

The inner iteration is done until the convergence of \(\varvec{\gamma }^{(k)}\), meaning \(\frac{\left| \left| \varvec{\gamma }^{(k)} - \varvec{\gamma }^{(k-1)} \right| \right| }{\left| \left| \varvec{\gamma }^{(k)} \right| \right| }~<~\varepsilon _1\). Then, the outer iteration is repeated. The inner and outer loops are iterated until the coefficients of \(\varPsi ^{(m)}\) are constant, meaning \(\frac{\left| \left| \varvec{\nu }^{(m)} - \varvec{\nu }^{(m-1)} \right| \right| }{\left| \left| \varvec{\nu }^{(m)} \right| \right| } < \varepsilon _2\).

Algorithm 2

(FlexGAM2)

Again the inner iteration is done until the convergence of \(\varvec{\gamma }^{(k)}\). Then, the outer iteration is repeated. The inner and outer loops are iterated until the coefficients of \(\hat{h}^{(m)}\) are constant, meaning \(\frac{\left| \left| \varvec{\nu }^{(m)} - \varvec{\nu }^{(m-1)} \right| \right| }{\left| \left| \varvec{\nu }^{(m)} \right| \right| }~<~\varepsilon _2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiegel, E., Kneib, T. & Otto-Sobotka, F. Generalized additive models with flexible response functions. Stat Comput 29, 123–138 (2019). https://doi.org/10.1007/s11222-017-9799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9799-6

Keywords

Navigation